Search Results

You are looking at 31 - 40 of 45 items for

  • Abstract: Inflammation x
  • Abstract: Late effects of cancer treatment x
  • Abstract: Cognition x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Angela Köninger, Philippos Edimiris, Laura Koch, Antje Enekwe, Claudia Lamina, Sabine Kasimir-Bauer, Rainer Kimmig, and Hans Dieplinger

Oxidative stress seems to be present in patients with polycystic ovary syndrome (PCOS). The aim of this study was to evaluate the correlation between characteristics of PCOS and serum concentrations of afamin, a novel binding protein for the antioxidant vitamin E. A total of 85 patients with PCOS and 76 control subjects were investigated in a pilot cross-sectional study design between 2009 and 2013 in the University Hospital of Essen, Germany. Patients with PCOS were diagnosed according to the Rotterdam ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Afamin and diagnostic parameters of PCOS were determined at early follicular phase. Afamin concentrations were significantly higher in patients with PCOS than in controls (odds ratio (OR) for a 10 mg/ml increase in afamin=1.3, 95% CI=1.08–1.58). This difference vanished in a model adjusting for age, BMI, free testosterone index (FTI), and sex hormone-binding globulin (SHBG) (OR=1.05, 95% CI=0.80–1.38). In patients with PCOS, afamin correlated significantly with homeostatic model assessment-insulin resistance (HOMA-IR), fasting glucose, BMI, FTI, and SHBG (P<0.001), but in a multivariate linear model, only HOMA-IR remained significantly associated with afamin (P=0.001). No correlation was observed between afamin and androgens, LH, FSH, LH/FSH ratio, antral follicle count, ovarian volume, or anti-Müllerian hormone. In conclusion, elevated afamin values may indicate a state of oxidative stress and inflammation, strongly associated with IR and offering an indicator of impaired glucose tolerance in patients with PCOS irrespective of obesity.

Open access

Karim Gariani, Geneviève Drifte, Irène Dunn-Siegrist, Jérôme Pugin, and François R Jornayvaz

Fibroblast growth factor 21 (FGF21) is a key regulator in glucose and lipid metabolism and its plasma levels have been shown to be increased not only in humans in different situations such as type 2 diabetes, obesity, and nonalcoholic fatty liver disease but also in animal models of sepsis and pancreatitis. FGF21 is considered as a pharmacological candidate in conditions associated with insulin resistance. The aim of this study was to compare FGF21 plasma levels in patients with sepsis, in patients with systemic inflammatory response syndrome (SIRS), and in healthy controls. We measured FGF21 plasma concentrations in 22 patients with established sepsis, in 11 with SIRS, and in 12 healthy volunteers. Here, we show that FGF21 levels were significantly higher in plasma obtained from patients with sepsis and SIRS in comparison with healthy controls. Also, FGF21 levels were significantly higher in patients with sepsis than in those with noninfectious SIRS. FGF21 plasma levels measured at study entry correlated positively with the APACHE II score, but not with procalcitonin levels, nor with C-reactive protein, classical markers of sepsis. Plasma concentrations of FGF21 peaked near the onset of shock and rapidly decreased with clinical improvement. Taken together, these results indicate that circulating levels of FGF21 are increased in patients presenting with sepsis and SIRS, and suggest a role for FGF21 in inflammation. Further studies are needed to explore the potential role of FGF21 in sepsis as a potential therapeutic target.

Open access

Mengxue Yang, Bowen Sun, Jianhui Li, Bo Yang, Jie Xu, Xue Zhou, Jie Yu, Xuan Zhang, Qun Zhang, Shan Zhou, and Xiaohua Sun

Objectives

The pathogenesis of Graves’ disease (GD) remains unclear. In terms of environmental factors, GD development may be associated with chronic inflammation caused by alteration of the intestinal flora. This study explored the association of intestinal flora alteration with the development of GD among the Han population in southwest China.

Design and methods

Fifteen GD patients at the Affiliated Hospital of Zunyi Medical College between March 2016 and March 2017 were randomly enrolled. Additionally, 15 sex- and age-matched healthy volunteers were selected as the control group during the same period. Fresh stool samples were collected, and bacterial 16S RNA was extracted and amplified for gene sequencing with the Illumina MiSeq platform. The sequencing results were subjected to operational taxonomic unit-based classification, classification verification, alpha diversity analysis, taxonomic composition analysis and partial least squares-discriminant analysis (PLS-DA).

Results

The diversity indices for the GD group were lower than those for the control group. The GD group showed significantly higher abundances of Firmicutes, Proteobacteria and Actinobacillus and a higher Firmicutes/Bacteroidetes ratio than the control group. PLS-DA suggested the satisfactory classification of the flora between the GD group and the control group. The abundances of the genera Oribacterium, Mogibacterium, Lactobacillus, Aggregatibacter and Mogibacterium were significantly higher in the GD group than in the control group (P < 0.05).

Conclusions

The intestinal flora of GD patients was significantly different from that of the healthy population. Thus, alteration of intestinal flora may be associated with the development of GD.

Open access

Eva Novoa, Marcel Gärtner, and Christoph Henzen

Objective

The study aimed to assess the possible systemic effects of intratympanic dexamethasone (IT-Dex) on the hypothalamic–pituitary–adrenal (HPA) axis, inflammation, and bone metabolism.

Design

A prospective cohort study including 30 adult patients of a tertiary referral ENT clinic treated with 9.6 mg IT-Dex over a period of 10 days was carried out.

Methods

Effects on plasma and salivary cortisol concentrations (basal and after low-dose (1 μg) ACTH stimulation), peripheral white blood cell count, and biomarkers for bone turnover were measured before (day 0) and after IT-Dex (day 16). Additional measurements for bone turnover were performed 5 months after therapy. Clinical information and medication with possible dexamethasone interaction were recorded.

Results

IT-Dex was well tolerated, and no effect was detected on the HPA axis (stimulated plasma and salivary cortisol concentration on day 0: 758±184 and 44.5±22.0 nmol/l; day 16: 718±154 and 39.8±12.4 nmol/l; P=0.58 and 0.24 respectively). Concentrations of osteocalcin (OC) and bone-specific alkaline phosphatase (BSAP) did not differ after dexamethasone (OC on days 0 and 16 respectively: 24.1±10.5 and 23.6±8.8 μg/l; BSAP on day 0, 16, and after 5 months respectively: 11.5±4.2, 10.3±3.4, and 12.6±5.06 μg/l); similarly, there was no difference in the peripheral white blood cell count (5.7×1012/l and 6.1×1012/l on days 0 and 16 respectively).

Conclusions

IT-Dex therapy did not interfere with endogenous cortisol secretion or bone metabolism.

Open access

Peter Ergang, Anna Mikulecká, Martin Vodicˇka, Karla Vagnerová, Ivan Mikšík, and Jirˇí Pácha

Stress is an important risk factors for human diseases. It activates the hypothalamic–pituitary–adrenal (HPA) axis and increases plasma glucocorticoids, which are powerful regulators of immune system. The response of the target cells to glucocorticoids depends not only on the plasma concentrations of cortisol and corticosterone but also on their local metabolism. This metabolism is catalyzed by 11β-hydroxysteroid dehydrogenases type 1 and 2, which interconvert glucocorticoid hormones cortisol and corticosterone and their 11-oxo metabolites cortisone and 11-dehydrocorticosterone. The goal of this study was to determine whether stress modulates glucocorticoid metabolism within lymphoid organs – the structures where immune cells undergo development and activation. Using the resident-intruder paradigm, we studied the effect of social stress on glucocorticoid metabolism in primary and secondary lymphoid organs of Fisher 344 (F344) and Lewis (LEW) rats, which exhibit marked differences in their HPA axis response to social stressors and inflammation. We show that repeated social defeat increased the regeneration of corticosterone from 11-dehydrocorticosterone in the thymus, spleen and mesenteric lymphatic nodes (MLN). Compared with the F344 strain, LEW rats showed higher corticosterone regeneration in splenocytes of unstressed rats and in thymic and MLN mobile cells after stress but corticosterone regeneration in the stroma of all lymphoid organs was similar in both strains. Inactivation of corticosterone to 11-dehydrocorticosterone was found only in the stroma of lymphoid organs but not in mobile lymphoid cells and was not upregulated by stress. Together, our findings demonstrate the tissue- and strain-dependent regeneration of glucocorticoids following social stress.

Open access

T P McVeigh, R J Mulligan, U M McVeigh, P W Owens, N Miller, M Bell, F Sebag, C Guerin, D S Quill, J B Weidhaas, M J Kerin, and A J Lowery

Introduction

MicroRNAs (miRNAs) are small noncoding RNA molecules that exert post-transcriptional effects on gene expression by binding with cis-regulatory regions in target messenger RNA (mRNA). Polymorphisms in genes encoding miRNAs or in miRNA–mRNA binding sites confer deleterious epigenetic effects on cancer risk. miR-146a has a role in inflammation and may have a role as a tumour suppressor. The polymorphism rs2910164 in the MIR146A gene encoding pre-miR-146a has been implicated in several inflammatory pathologies, including cancers of the breast and thyroid, although evidence for the associations has been conflicting in different populations. We aimed to further investigate the association of this variant with these two cancers in an Irish cohort.

Methods

The study group comprised patients with breast cancer (BC), patients with differentiated thyroid cancer (DTC) and unaffected controls. Germline DNA was extracted from blood or from saliva collected using the DNA Genotek Oragene 575 collection kit, using crystallisation precipitation, and genotyped using TaqMan-based PCR. Data were analysed using SPSS, v22.

Results

The total study group included 1516 participants. This comprised 1386 Irish participants; 724 unaffected individuals (controls), 523 patients with breast cancer (BC), 136 patients with differentiated thyroid cancer (DTC) and three patients with dual primary breast and thyroid cancer. An additional cohort of 130 patients with DTC from the South of France was also genotyped for the variant. The variant was detected with a minor allele frequency (MAF) of 0.19 in controls, 0.22 in BC and 0.27 and 0.26 in DTC cases from Ireland and France, respectively. The variant was not significantly associated with BC (per allele odds ratio = 1.20 (0.98–1.46), P = 0.07), but was associated with DTC in Irish patients (per allele OR = 1.59 (1.18–2.14), P = 0.002).

Conclusion

The rs2910164 variant in MIR146A is significantly associated with DTC, but is not significantly associated with BC in this cohort.

Open access

Janko Sattler, Jinwen Tu, Shihani Stoner, Jingbao Li, Frank Buttgereit, Markus J Seibel, Hong Zhou, and Mark S Cooper

Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

Open access

Ermina Bach, Niels Møller, Jens Otto L Jørgensen, Mads Buhl, and Holger Jon Møller

Aims/hypothesis

The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner.

Methods

We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively.

Results:

Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163.

Conclusion:

Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.

Open access

Nikolaj Rittig, Mads Svart, Niels Jessen, Niels Møller, Holger J Møller, and Henning Grønbæk

Background

Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2) and non-alcoholic fatty liver disease (NAFLD). This suggests that macrophage activation is involved in the pathogenesis of conditions is characterised by adaptions in the lipid metabolism. Since sCD163 is shed to serum by inflammatory signals including lipopolysaccharides (LPS, endotoxin), we investigated sCD163 and correlations with lipid metabolism following LPS exposure.

Methods

Eight healthy male subjects were investigated on two separate occasions: (i) following an LPS exposure and (ii) following saline exposure. Each study day consisted of a four-hour non-insulin-stimulated period followed by a two-hour hyperinsulinemic euglycemic clamp period. A 3H-palmitate tracer was used to calculate the rate of appearance (Rapalmitate). Blood samples were consecutively obtained throughout each study day. Abdominal subcutaneous adipose tissue was obtained for western blotting.

Results

We observed a significant two-fold increase in plasma sCD163 levels following LPS exposure (P < 0.001), and sCD163 concentrations correlated positively with the plasma concentration of free fatty acids, Rapalmitate, lipid oxidation rates and phosphorylation of the hormone-sensitive lipase at serine 660 in adipose tissue (P < 0.05, all). Furthermore, sCD163 concentrations correlated positively with plasma concentrations of cortisol, glucagon, tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 (P < 0.05, all).

Conclusion

We observed a strong correlation between sCD163 and stimulation of lipolysis and fat oxidation following LPS exposure. These findings support preexisting theory that inflammation and macrophage activation play a significant role in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD.

Open access

Henrik H Thomsen, Holger J Møller, Christian Trolle, Kristian A Groth, Anne Skakkebæk, Anders Bojesen, Christian Høst, and Claus H Gravholt

Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.