Search Results

You are looking at 1 - 10 of 136 items for

  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Menopause x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Glenville Jones

Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.

Open access

Marcela Moraes Mendes, Patricia Borges Botelho, and Helena Ribeiro

Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.

Open access

Johanna Öberg, Rolf Jorde, Yngve Figenschau, Per Medbøe Thorsby, Sandra Rinne Dahl, Anne Winther, and Guri Grimnes


Combined hormonal contraceptive (CHC) use has been associated with higher total 25-hydroxyvitamin D (25(OH)D) levels. Here, we investigate the relation between CHC use and vitamin D metabolism to elucidate its clinical interpretation.


The cross-sectional Fit Futures 1 included 1038 adolescents. Here, a subgroup of 182 girls with available 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D (24,25(OH)2D), vitamin D-binding protein (DBP) and measured free 25(OH)D levels, in addition to parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), was investigated. Vitamin D metabolites were compared between girls using (CHC+) and not using CHC (CHC−). Further, the predictability of CHC on 25(OH)D levels was assessed in a multiple regression model including lifestyle factors. The ratios 1,25(OH)2D/25(OH)D and 24,25(OH)2D/25(OH)D (vitamin D metabolite ratio (VMR)) in relation to 25(OH)D were presented in scatterplots.


CHC+ (n  = 64; 35% of the girls) had higher 25(OH)D levels (mean ± s.d., 60.3 ± 22.2) nmol/L) than CHC- (n  = 118; 41.8 ± 19.3 nmol/L), P -values <0.01. The differences in 25(OH)D levels between CHC+ and CHC− were attenuated but remained significant after the adjustment of lifestyle factors. CHC+ also had higher levels of 1,25(OH)2D, 24,25(OH)2D, DBP and calcium than CHC−, whereas 1,25(OH)2D/25(OH)D, PTH, FGF23 and albumin were significantly lower. Free 25(OH)D and VMR did not statistically differ, and both ratios appeared similar in relation to 25(OH)D, irrespective of CHC status.


This confirms a clinical impact of CHC on vitamin D levels in adolescents. Our observations are likely due to an increased DBP-concentration, whereas the free 25(OH)D appears unaltered.

Open access

Shu-Meng Hu, Yang-Juan Bai, Ya-Mei Li, Ye Tao, Xian-Ding Wang, Tao Lin, Lan-Lan Wang, and Yun-Ying Shi


Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation.

Materials and methods

Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23–KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients.


Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12.


Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.

Open access

Natércia Neves Marques de Queiroz, Franciane Trindade Cunha de Melo, Fabrício de Souza Resende, Luísa Corrêa Janaú, Norberto Jorge Kzan de Souza Neto, Manuela Nascimento de Lemos, Ana Carolina Lobato Virgolino, Maria Clara Neres Iunes de Oliveira, Angélica Leite de Alcântara, Lorena Vilhena de Moraes, Tiago Franco David, Wanderson Maia da Silva, Scarlatt Souza Reis, Márcia Costa dos Santos, Ana Carolina Contente Braga de Souza, Pedro Paulo Freire Piani, Neyla Arroyo Lara Mourão, Karem Mileo Felício, João Felício Abrahão Neto, and João Soares Felício


Investigate the prevalence of vitamin D deficiency in an equatorial population through a large-sample study.


Cross-sectional study with 30,224 healthy individuals from the North Region, in Brazil (Amazônia – state of Pará), who had 25-hydroxy-vitamin D (25(OH)D) and intact parathyroid hormone (PTH) serum levels measured by immunoassay method. Those with history of acute or chronic diseases were excluded. Abnormal levels of calcium, creatinine, glycemia and albumin were also exclusion criteria.


25(OH)D levels were 29.1 ± 8.2 ng/mL and values <12.7 ng/mL were equal to < −2 s.d. below average. Hypovitaminosis D was present in 10% of subjects according to the Institute of Medicine (values <20 ng/mL) and in 59%, in consonance with Endocrine Society (values 20–30 ng/mL as insufficiency and <20 ng/mL as deficiency) criteria. Individuals were divided according to four age brackets: children, adolescents, adults and elderly, and their 25(OH)D levels were: 33 ± 9; 28.5 ± 7.4; 28.3 ± 7.7; 29.3 ± 8.5 ng/mL, respectively. All groups differed in 25(OH)D, except adolescents vs adults. Regression model showed BMI, sex, living zone (urban or rural) and age as independent variables to 25(OH)D levels. Comparing subjects with vitamin D deficiency (<20 ng/mL) to those with vitamin D insufficiency (20–30 ng/mL), a difference between PTH levels in these two groups was observed (95.9 ± 24.7 pg/mL vs 44.2 ± 64.5 pg/mL; P < 0.01). Additionally, the most accurate predictive vitamin D level for subclinical hyperparathyroidism in ROC curve was 26 ng/mL.


Our equatorial population showed low prevalence of vitamin D hypovitaminosis ranging with age bracket. The insufficient category by Endocrine Society was corroborated by our PTH data.

Open access

Jane Fletcher, Emma L Bishop, Stephanie R Harrison, Amelia Swift, Sheldon C Cooper, Sarah K Dimeloe, Karim Raza, and Martin Hewison

Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.

Open access

Gabriella Oliveira Lima, Alex Luiz Menezes da Silva, Julianne Elba Cunha Azevedo, Chirlene Pinheiro Nascimento, Luana Rodrigues Vieira, Akira Otake Hamoy, Luan Oliveira Ferreira, Verônica Regina Lobato Oliveira Bahia, Nilton Akio Muto, Dielly Catrina Favacho Lopes, and Moisés Hamoy

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

Open access

Ranganathan R Rao, Harpal S Randeva, Sailesh Sankaranarayanan, Murthy Narashima, Matthias Möhlig, Hisham Mehanna, and Martin O Weickert


Vitamin D deficiency further increases circulating parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism (pHPT), with potential detrimental effects on bone mass.


This was an observational clinical study in consecutive conservatively treated postmenopausal women (n=40) with pHPT and coexistent 25-hydroxyvitamin D deficiency (25OHD ≤50 nmol/l (≤20 ng/ml)). Patients who showed an increase in serum 25OHD above the threshold of vitamin D deficiency (>50 nmol/l; n=28) using treatment with various commonly prescribed vitamin D preparations were, for the purposes of statistical analyses, allocated to the treatment group. Patients who were retrospectively identified as having received no treatment with vitamin D and/or remained vitamin D deficient were considered as non-responders/controls (n=12). Adjusted calcium (adjCa), PTH and 25OHD concentrations were monitored in all subjects up to 54 months (mean observation period of 18±2 months).


Prolonged increased vitamin D intake, regardless of the source (serum 25OHD, increase from 32.2±1.7 nmol/l at baseline to 136.4±11.6 nmol/l, P<0.0001), significantly reduced serum PTH (13.3±1.1 vs 10.5±1.0 pmol/l, P=0.0001), with no adverse effects on adjCa levels (2.60±0.03 vs 2.60±0.02 mmol/l, P=0.77) and renal function tests (P>0.73). In contrast, serum PTH remained unchanged (15.8±2.6 vs 16.3±1.9 pmol/l, P=0.64) in patients who remained vitamin D deficient, with a significant difference between groups in changes of PTH (P=0.0003). Intrapartial correlation analyses showed an independent negative correlation of changes in 25OHD with PTH levels (r ic=−0.41, P=0.014).


Prolonged treatment with vitamin D in various commonly prescribed preparations appeared to be safe and significantly reduced PTH levels by 21%.

Open access

Sharon A Huish, Carl Jenkinson, Janet A Dunn, David J Meredith, Rosemary Bland, and Martin Hewison

Low serum 1,25-dihydroxyvitamin D (1,25(OH)2D) in end-stage renal disease (ESRD) is considered a consequence of elevated fibroblast growth factor 23 (FGF23) and concomitant reduced activity of renal 1α-hydroxylase (CYP27B1). Current ESRD treatment strategies to increase serum calcium and suppress secondary hyperparathyroidism involve supplementation with vitamin D analogues that circumvent 1α-hydroxylase. This overlooks the potential importance of 25-hydroxyvitamin D (25(OH)D) deficiency as a contributor to low serum 1,25(OH)2D. We investigated the effects of vitamin D (cholecalciferol) supplementation (40,000 IU for 12 weeks and maintenance dose of 20,000 IU fortnightly), on multiple serum vitamin D metabolites (25(OH)D, 1,25(OH)2D3 and 24,25(OH)2D3) in 55 haemodialysis patients. Baseline and 12 month data were compared using related-samples Wilcoxon signed rank test. All patients remained on active vitamin D analogues as part of routine ESRD care. 1,25(OH)2D3 levels were low at baseline (normal range: 60–120 pmol/L). Cholecalciferol supplementation normalised both serum 25(OH)D and 1,25(OH)2D3. Median serum 25(OH)D increased from 35.1 nmol/L (IQR: 23.0–47.5 nmol/L) to 119.9 nmol/L (IQR: 99.5–143.3 nmol/L) (P < 0.001). Median serum 1,25(OH)2D3 and 24,25(OH)2D3 increased from 48.3 pmol/L (IQR: 35.9–57.9 pmol/L) and 3.8 nmol/L (IQR: 2.3–6.0 nmol/L) to 96.2 pmol/L (IQR: 77.1–130.6 pmol/L) and 12.3 nmol/L (IQR: 9–16.4 nmol/L), respectively (P < 0.001). A non-significant reduction in daily active vitamin D analogue dose occurred, 0.94 µmcg at baseline to 0.77 µmcg at 12 months (P = 0.73). The ability to synthesise 1,25(OH)2D3 in ESRD is maintained but is substrate dependent, and serum 25(OH)D was a limiting factor at baseline. Therefore, 1,25(OH)2D3 deficiency in ESRD is partly a consequence of 25(OH)D deficiency, rather than solely due to reduced 1α-hydroxylase activity as suggested by current treatment strategies.

Open access

Mirjam M Oosterwerff, Rosa Meijnen, Natasja M Van Schoor, Dirk L Knol, Mark H H Kramer, Mireille N M Van Poppel, Paul Lips, and E Marelise W Eekhoff

Vitamin D deficiency is highly prevalent among non-western immigrants in The Netherlands and associated with poor physical performance. The aim of this study was to assess the effect of vitamin D supplementation on physical performance, exercise capacity, and daily physical activity in vitamin D-deficient, overweight non-western immigrants. A randomized double-blind, placebo-controlled trial was conducted to assess the effect of vitamin D on physical performance. A total of 130 participants were included. Eligibility criteria included overweight (BMI >27 kg/m2), 25-hydroxy vitamin D (25(OH)D) ≤50 nmol/l, and an age range of 20–65 years. The intervention group received 1200 IU vitamin D3 daily for 4 months; the control group received placebo. Both groups received 500 mg calcium daily. Outcome measures included physical performance (physical performance score), exercise capacity (a 6-min walk test (6-MWT)), and daily physical activity (questionnaire and accelerometer). There was no significant effect on physical performance, exercise capacity, or physical activity in the intention to treat analysis. In an explorative post hoc analysis restricted to participants reaching a serum 25(OH)D concentration of >60 nmol/l after intervention, there was an improvement of 19 m in the 6-MWT compared with the control group (P=0.053). Moderate dose vitamin D supplementation did not significantly improve physical performance, exercise capacity, or physical activity. However, when 25(OH)D concentrations reached >60 nmol/l after intervention, there was a borderline significant improvement in exercise capacity. Although the clinical relevance is not clear, this is a promising result, as all participants were overweight and did not improve their overall activity levels.