Search Results

You are looking at 11 - 20 of 79 items for

  • Abstract: Birth defect x
  • Abstract: Bisphenol-A x
  • Abstract: Drugs x
  • Abstract: endocrine disrupters x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Christine Poitou, Anthony Holland, Charlotte Höybye, Laura C G de Graaff, Sandrine Bottius, Berit Otterlei, and Maithé Tauber

Prader–Willi syndrome (PWS), the most common form of syndromic obesity, is a complex neurodevelopmental genetic disorder including obesity with hyperphagia, endocrine and metabolic disorders and also psychiatric disorders. The most frequent endocrine disturbances include hypogonadism and growth hormone (GH) deficiency. Hypothyroidism and central adrenal insufficiency can also be observed but are less frequent. The transition of individuals with PWS from adolescence to adult life is challenging because of multiple comorbidities and complex disabilities. Individuals and caregivers face psychological, medical and social issues. This period of profound changes is thus prone to disruptions, and the main risks being the worsening of the medical situation and loss to follow-up of the individuals. Medical care may be poorly adapted to the needs of individuals because of a lack of knowledge concerning the syndrome and also lack of the necessary specific skills. A multidisciplinary panel composed of several experts in PWS met in November 2021 during an European Reference Network on Rare Endocrine Conditions (Endo-ERN) webinar. They presented complementary aspects of PWS from the perspective of the transition including psychiatric, pediatric and adult endocrinological and parent’s and patient’s points of view and shed light on the best way to approach this pivotal period.

Open access

Angelica Amorim Amato, Hailey Brit Wheeler, and Bruce Blumberg

Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This “generational toxicology” is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.

Open access

Shane M Regnier, Andrew G Kirkley, Daniel Ruiz, Wakanene Kamau, Qian Wu, Kurunthachalam Kannan, and Robert M Sargis

Emerging evidence implicates environmental endocrine-disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes; however, the interactions between EDCs and traditional risk factors in disease pathogenesis remain incompletely characterized. The present study interrogates the interaction of the EDC tolylfluanid (TF) and traditional dietary stressors in the promotion of metabolic dysfunction. Eight-week-old male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) or a high-sucrose diet (HSD), with or without TF supplementation at 100 μg/g, for 12 weeks. Food intake, body weight and visceral adiposity were quantified. Glucose homeostasis was interrogated by intraperitoneal glucose and insulin tolerance tests at 9 and 10 weeks of exposure, respectively. After 12 weeks of dietary exposure, metabolic cage analyses were performed to interrogate nutrient handling and energy expenditure. In the background of an HFHSD, TF promoted glucose intolerance; however, weight gain and insulin sensitivity were unchanged, and visceral adiposity was reduced. In the background of an HSD, TF increased visceral adiposity; however, glucose tolerance and insulin sensitivity were unchanged, while weight gain was reduced. Thus, these analyses reveal that the metabolic perturbations induced by dietary exposure to TF, including the directionality of alterations in body weight gain, visceral adiposity and glucose homeostasis, are influenced by dietary macronutrient composition, suggesting that populations may exhibit distinct metabolic risks based on their unique dietary characteristics.

Open access

M Krause, H Frederiksen, K Sundberg, F S Jørgensen, L N Jensen, P Nørgaard, C Jørgensen, P Ertberg, J H Petersen, U Feldt-Rasmussen, A Juul, K T Drzewiecki, N E Skakkebaek, and A M Andersson

Background

Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo. Exposure to these chemicals, especially during prenatal development, is of concern.

Objectives

To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes.

Methods

Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined.

Results

Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T3), thyroxine (T4), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group.

Conclusions

Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children’s health.

Open access

Daniel Alexander Hescheler, Milan Janis Michael Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Josephine Bruns, Hakan Alakus, and Costanza Chiapponi

Objective

Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify the targeted drugs already approved by the Food and Drug Administration (FDA) for solid cancer in general, which could be effective in ATC.

Design

Database mining.

Methods

FDA-approved drugs for targeted therapy were identified by screening the databases of MyCancerGenome and the National Cancer Institute. Drugs were linked to the target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response.

Results

In the study,155 FDA-approved drugs with 136 potentially targetable genes were identified. Seventeen (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% of patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. Fifteen percent of the patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response.

Conclusions

While ATC carrying BRAF mutations can benefit from BRAF inhibitors and this effect might be enhanced by a combined strategy including PIK3CA inhibitors in some of the patients, alterations in BRAFWT ATC are not directly targeted by currently FDA-approved options.

Open access

Bernardo Maia, Leandro Kasuki, and Mônica R Gadelha

Acromegaly is a systemic disease associated with increased morbidity and mortality. Most of these comorbidities can be prevented or delayed with adequate disease treatment. Although three modalities of treatment (surgery, medical treatment, and radiotherapy) are available and new drugs were approved in the last decades, there are still some patients that maintain disease activity despite treatment. Therefore, there is a need for novel therapies for acromegaly and for that purpose new formulations of currently used drugs and also new drugs are currently under study. In this review, we summarize the novel therapies for acromegaly.

Open access

Ruixin Hu, Yanting Yuan, Chaolong Liu, Ji Zhou, Lixia Ji, and Guohui Jiang

In patients with type 2 diabetes mellitus (T2DM), the intestinal flora is out of balance and accompanied by leaky gut. The flora is characterized by an increase in mucus-degrading bacteria and a decrease in fiber-degrading bacteria. Short-chain fatty acids (SCFAs), as the major fiber-degrading bacteria fermentation, not only ameliorate the leaky gut, but also activate GPR43 to increase the mass of functional pancreatic β-cells and exert anti-inflammation effect. At present, the gut microbiota is considered as the potential target for anti-diabetes drugs, and how to reverse the imbalance of gut microbiota has become a therapeutic strategy for T2DM. This review briefly summarizes the drugs or compounds that have direct or potential therapeutic effects on T2DM by modulating the gut microbiota, including biguanides, isoquinoline alkaloids, stilbene and C7N-aminocyclic alcohols.

Open access

Nassim Ghaffari-Tabrizi-Wizsy, Christina Angelika Passegger, Laura Nebel, Fabian Krismer, Gudrun Herzer-Schneidhofer, Gert Schwach, and Roswitha Pfragner

Preclinical trials of medullary thyroid cancer (MTC) therapeutics require both in vitro and in vivo analyses. Human tumour xenografted rodent models, which are considered the ‘gold standard’ to study and validate the efficacy and toxicity of lead compounds before translation to clinical trials, are very expensive, subject to organismal variability and ethical controversies. The avian chorioallantoic membrane (CAM) assay provides an alternative versatile, cost-effective and ethically less objectionable short-term, in vivo model for reliable screening of drugs. In this work, we grafted two MTC cell lines and patient-derived MTC tumour samples onto the avian CAM and characterised the resulted tumours histologically and immunohistochemically. Our findings provide the evidence that the CAM assay is a suitable model for studying the pathophysiology of MTC and can even be used as in vivo system for drug testing.

Open access

Maria Cristina De Martino, Richard A Feelders, Claudia Pivonello, Chiara Simeoli, Fortuna Papa, Annamaria Colao, Rosario Pivonello, and Leo J Hofland

Adrenocortical carcinomas (ACCs) are rare tumors with scant treatment options for which new treatments are required. The mTOR pathway mediates the intracellular signals of several growth factors, including the insulin-like growth factors (IGFs), and therefore represents a potential attractive pathway for the treatment of several malignancies including ACCs. Several mTOR inhibitors, including sirolimus, temsirolimus and everolimus, have been clinically developed. This review summarizes the results of the studies evaluating the expression of the mTOR pathway components in ACCs, the effects of the mTOR inhibitors alone or in combination with other drugs in preclinical models of ACCs and the early experience with the use of these compounds in the clinical setting. The mTOR pathway seems a potential target for treatment of patients with ACC, but further investigation is still required to define the potential role of mTOR inhibitors alone or in combination with other drugs in the treatment of ACC patients.

Open access

Anne Jouinot, Bernard Royer, Etienne Chatelut, Sotheara Moeung, Guillaume Assié, Audrey Thomas-Schoemann, Jérôme Bertherat, François Goldwasser, and Benoit Blanchet

Background

The combination of mitotane and platinum-etoposide chemotherapy is a front-line treatment in metastatic adrenocortical carcinoma (ACC), although this regimen shows limited efficacy. Pharmacokinetic drug–drug interaction between mitotane, a strong CYP3A4 inducer, and etoposide, which is a substrate of CYP3A4, may contribute to chemoresistance. The aim of this pilot study was to assess the pharmacokinetic interaction between mitotane and etoposide in ACC patients.

Methods

Five consecutive ACC patients treated with platinum etoposide (120–150 mg/m2 day 1–2–3 at cycle 1), with or without concomitant mitotane, were included. In the absence of limiting toxicity, a dose escalation of etoposide was proposed since cycle 2. Plasma etoposide concentrations were measured using liquid chromatography at 0, 4 and 24 h after each infusion. Clearance and area under the curve (AUC) of etoposide were determined at each cycle.

Results

Patients received two to six chemotherapy cycles, in association with mitotane (N = 4) or after mitotane discontinuation (N = 1). Etoposide clearance was two-fold higher with concomitant mitotane (4.95 L/h) than after mitotane discontinuation (2.53 L/h, P = 0.014), and 2.5-fold higher than that in reference population not treated with mitotane (1.81 L/h). Etoposide dose escalation was performed in four patients under mitotane, resulting in two minor tumor responses and one severe toxicity (febrile aplasia) at dose of 300 mg/m2/day. Tumor response was associated with higher etoposide AUC (267.3 vs 188.8 mg.h/L, P = 0.04).

Conclusion

A drug–drug interaction between mitotane and etoposide may contribute to the low efficacy of platinum-etoposide chemotherapy. This pilot study suggests further a potential benefit of increasing etoposide dose in ACC patients receiving mitotane.