Search Results

You are looking at 31 - 40 of 183 items for

  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Rolf Jorde and Guri Grimnes

Objective

In addition to its skeletal effects, vitamin D may also be important for health in general. It is uncertain what level of serum 25-hydroxyvitamin D (25(OH)D), marker of vitamin D status, is sufficient for these effects. With decreasing serum 25(OH)D levels there is an increase in serum PTH. The point at which this occurs has been considered as a threshold for vitamin D sufficiency. The thresholds found have varied widely and have mainly been based on observational studies. However, to truly establish a threshold for vitamin D effects, this has to be based on randomized controlled trials (RCTs).

Methods

The study included 2803 subjects from a general health survey, the Tromsø study, and pooled individual person data from five vitamin D intervention studies (n = 1544). Serum parathyroid hormone (PTH) and change in PTH after vitamin D supplementation were related to serum 25(OH)D levels in steps of 25 nmol/L (<24, 25–49, 50–74, 75–99, and >99 nmol/L).

Results

In the Tromsø study, in the females there was a gradual decrease in serum PTH with increasing serum 25(OH)D with no apparent plateau, whereas in the males the decrease in PTH in subjects with serum 25(OH)D >74 nmol/l was marginal. In pooled RCTs, there was a significant reduction in serum PTH by vitamin D supplementation regardless of baseline serum 25(OH)D level.

Conclusions

The use of the serum PTH–25(OH)D relation from observational studies to determine a threshold for vitamin D sufficiency is highly questionable.

Open access

Iulia Soare, Anca Sirbu, Mihai Mircea Diculescu, Bogdan Radu Mateescu, Cristian Tieranu, Sorina Martin, Carmen Gabriela Barbu, Mirela Ionescu, and Simona Fica

Background and aim

Low bone mineral density (BMD) is a common complication in patients with inflammatory bowel disease (IBD). However, debates are ongoing with regard to the other involved factors, especially in younger patients. This study aimed to evaluate the parameters that contribute to decreased BMD, focusing on premenopausal women and men aged <50 years.

Methods

This study included 81 patients with IBD and 81 age-, sex- and BMI-matched controls. Blood tests were conducted on IBD patients, and a dual-energy X-ray absorptiometry (DXA) scan was performed on both groups.

Results

Low BMD and fragility fracture were found to be more prevalent in IBD patients than in healthy subjects (49.3% vs 23.4%, P = 0.001 and 9.8% vs 1.2%, P = 0.01, respectively). Patients with low BMD were older, with a longer disease duration, higher faecal calprotectin (FC) levels and lower magnesium and lean mass (appreciated as appendicular skeletal muscle index (ASMI)). Multiple regression analysis revealed that ASMI, age and use of glucocorticoids were the independent parameters for decreased BMD. Although 91.3% of the patients had a 25-hydroxy vitamin D level of <30 ng/mL, it was not a statistically significant factor for decreased BMD.

Conclusion

In our study, the levels of vitamin D did not seem to have an important impact on BMD. Conversely, FC, magnesium and lean mass are important factors, suggesting that good control of disease, adequate magnesium intake and increased lean mass can have a good impact on bone metabolism in patients with IBD.

Open access

K Amrein, A Papinutti, E Mathew, G Vila, and D Parekh

The prevalence of vitamin D deficiency in intensive care units ranges typically between 40 and 70%. There are many reasons for being or becoming deficient in the ICU. Hepatic, parathyroid and renal dysfunction additionally increases the risk for developing vitamin D deficiency. Moreover, therapeutic interventions like fluid resuscitation, dialysis, surgery, extracorporeal membrane oxygenation, cardiopulmonary bypass and plasma exchange may significantly reduce vitamin D levels. Many observational studies have consistently shown an association between low vitamin D levels and poor clinical outcomes in critically ill adults and children, including excess mortality and morbidity such as acute kidney injury, acute respiratory failure, duration of mechanical ventilation and sepsis. It is biologically plausible that vitamin D deficiency is an important and modifiable contributor to poor prognosis during and after critical illness. Although vitamin D supplementation is inexpensive, simple and has an excellent safety profile, testing for and treating vitamin D deficiency is currently not routinely performed. Overall, less than 800 patients have been included in RCTs worldwide, but the available data suggest that high-dose vitamin D supplementation could be beneficial. Two large RCTs in Europe and the United States, together aiming to recruit >5000 patients, have started in 2017, and will greatly improve our knowledge in this field. This review aims to summarize current knowledge in this interdisciplinary topic and give an outlook on its highly dynamic future.

Open access

J A Tamblyn, C Jenkinson, D P Larner, M Hewison, and M D Kilby

Vitamin D deficiency is common in pregnant women and may contribute to adverse events in pregnancy such as preeclampsia (PET). To date, studies of vitamin D and PET have focused primarily on serum concentrations vitamin D, 25-hydroxyvitamin D3 (25(OH)D3) later in pregnancy. The aim here was to determine whether a more comprehensive analysis of vitamin D metabolites earlier in pregnancy could provide predictors of PET. Using samples from the SCOPE pregnancy cohort, multiple vitamin D metabolites were quantified by liquid chromatography–tandem mass spectrometry in paired serum and urine prior to the onset of PET symptoms. Samples from 50 women at pregnancy week 15 were analysed, with 25 (50%) developing PET by the end of the pregnancy and 25 continuing with uncomplicated pregnancy. Paired serum and urine from non-pregnant women (n = 9) of reproductive age were also used as a control. Serum concentrations of 25(OH)D3, 25(OH)D2, 1,25(OH)2D3, 24,25(OH)2D3 and 3-epi-25(OH)D3 were measured and showed no significant difference between women with uncomplicated pregnancies and those developing PET. As previously reported, serum 1,25(OH)2D3 was higher in all pregnant women (in the second trimester), but serum 25(OH)D2 was also higher compared to non-pregnant women. In urine, 25(OH)D3 and 24,25(OH)2D3 were quantifiable, with both metabolites demonstrating significantly lower (P < 0.05) concentrations of both of these metabolites in those destined to develop PET. These data indicate that analysis of urinary metabolites provides an additional insight into vitamin D and the kidney, with lower urinary 25(OH)D3 and 24,25(OH)2D3 excretion being an early indicator of a predisposition towards developing PET.

Open access

Fabienne A U Fox, Lennart Koch, Monique M B Breteler, and N Ahmad Aziz

Objective

Maintaining muscle function throughout life is critical for healthy ageing. Although in vitro studies consistently indicate beneficial effects of 25-hydroxyvitamin D (25-OHD) on muscle function, findings from population-based studies remain inconclusive. We therefore aimed to examine the association between 25-OHD concentration and handgrip strength across a wide age range and assess potential modifying effects of age, sex and season.

Methods

We analysed cross-sectional baseline data of 2576 eligible participants out of the first 3000 participants (recruited from March 2016 to March 2019) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Multivariate linear regression models were used to assess the relation between 25-OHD levels and grip strength while adjusting for age, sex, education, smoking, season, body mass index, physical activity levels, osteoporosis and vitamin D supplementation.

Results

Compared to participants with deficient 25-OHD levels (<30 nmol/L), grip strength was higher in those with inadequate (30 to <50 nmol/L) and adequate (≥50 to ≤125 nmol/L) levels (ß inadequate = 1.222, 95% CI: 0.377; 2.067, P = 0.005; ß adequate = 1.228, 95% CI: 0.437; 2.019, P = 0.002). Modelling on a continuous scale revealed grip strength to increase with higher 25-OHD levels up to ~100 nmol/L, after which the direction reversed (ß linear = 0.505, 95% CI: 0.179; 0.830, P = 0.002; ß quadratic = –0.153, 95% CI: –0.269; -0.038, P = 0.009). Older adults showed weaker effects of 25-OHD levels on grip strength than younger adults (ß 25OHDxAge = –0.309, 95% CI: –0.594; –0.024, P = 0.033).

Conclusions

Our findings highlight the importance of sufficient 25-OHD levels for optimal muscle function across the adult life span. However, vitamin D supplementation should be closely monitored to avoid detrimental effects.

Open access

Mohammed S Razzaque

Fibroblast growth factor‐23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α‐hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24‐hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.

Open access

Elisabet Einarsdottir, Minna Pekkinen, Kaarel Krjutškov, Shintaro Katayama, Juha Kere, Outi Mäkitie, and Heli Viljakainen

Objective

The effect of vitamin D at the transcriptome level is poorly understood, and furthermore, it is unclear if it differs between obese and normal-weight subjects. The objective of the study was to explore the transcriptome effects of vitamin D supplementation.

Design and methods

We analysed peripheral blood gene expression using GlobinLock oligonucleotides followed by RNA sequencing in individuals participating in a 12-week randomised double-blinded placebo-controlled vitamin D intervention study. The study involved 18 obese and 18 normal-weight subjects (of which 20 males) with mean (±s.d.) age 20.4 (±2.5) years and BMIs 36 (±10) and 23 (±4) kg/m2, respectively. The supplemental daily vitamin D dose was 50 µg (2000 IU). Data were available at baseline, 6- and 12-week time points and comparisons were performed between the vitamin D and placebo groups separately in obese and normal-weight subjects.

Results

Significant transcriptomic changes were observed at 6 weeks, and only in the obese subjects: 1724 genes were significantly upregulated and 186 genes were downregulated in the vitamin D group compared with placebo. Further analyses showed several enriched gene categories connected to mitochondrial function and metabolism, and the most significantly enriched pathway was related to oxidative phosphorylation (adjusted P value 3.08 × 10−14). Taken together, our data suggest an effect of vitamin D supplementation on mitochondrial function in obese subjects.

Conclusions

Vitamin D supplementation affects gene expression in obese, but not in normal-weight subjects. The altered genes are enriched in pathways related to mitochondrial function. The present study increases the understanding of the effects of vitamin D at the transcriptome level.

Open access

Kevin D Cashman

Background

Internationally, concern has been repeatedly raised about the little notable progress in the collection, analysis and use of population micronutrient status and deficiency data globally. The need for representative status and intake data for vitamin D has been highlighted as a research priority for well over a decade.

Aim and methods

A narrative review which aims to provide a summary and assessment of vitamin D nutritional status data globally. This review divides the world into the Food and Agriculture Organisation’s (FAO) major regions: the Americas, Europe, Oceania, Africa and Asia. Emphasis was placed on published data on the prevalence of serum 25-hydroxyvitamin D (25(OH)D) < 25/30 and <50 nmol/L (reflecting vitamin D deficiency and inadequacy, respectively) as well as vitamin D intake, where possible from nationally representative surveys.

Results

Collating data from the limited number of available representative surveys from individual countries might suggest a relatively low overall prevalence of vitamin D deficiency in South America, Oceania and North America, whereas there is more moderate prevalence in Europe and Asia, and possibly Africa. Overall, the prevalence of serum 25(OH)D < 25/30 and <50 nmol/L ranges from ~5 to 18% and 24 to 49%, respectively, depending on FAO world region. Usual intakes of vitamin D can also vary by FAO world region, but in general, with a few exceptions, there are very high levels of inadequacy of vitamin D intake.

Conclusions

While the burden of vitamin D deficiency and inadequacy varies by world regions and not just by UVB availability, the global burden overall translates into enormous numbers of individuals at risk.

Open access

Shatha Alharazy, M Denise Robertson, Susan Lanham-New, Muhammad Imran Naseer, Adeel G Chaudhary, and Eman Alissa

Background

Measurement of free 25-hydroyvitamin D (25(OH)D) status has been suggested as a more representative marker of vitamin D status than that of total 25(OH)D. Previously, free 25(OH)D could only be calculated indirectly; however, a newly developed direct assay for the measurement of free 25(OH)D is now available. The aim of this study therefore was to investigate directly measured total and free vitamin D levels association with metabolic health in postmenopausal healthy women living in Saudi Arabia.

Methods

A sample of 302 postmenopausal women aged ≥50 years (n  = 302) living in Saudi Arabia were recruited in a cross-sectional study design. Blood samples were collected from subjects for measurement of serum levels of total 25(OH)D, directly measured free 25(OH)D, metabolic bone parameters, lipid profile, and other biochemical tests.

Results

A positive correlation was found between directly measured free and total 25(OH)D (r = 0.64, P< 0.0001). Total but not free 25(OH)D showed significant association with serum intact parathyroid hormone (P = 0.004), whilst free 25(OH)D but not total 25(OH)D showed a significant association with total cholesterol and LDL-C (P = 0.032 and P = 0.045, respectively).

Conclusions

Free 25(OH)D and total 25(OH)D were found to be consistently correlated but with different associations to metabolic health parameters. Further research is needed to determine which marker of vitamin D status would be the most appropriate in population studies.

Open access

Amarjit Saini, Linda Björkhem-Bergman, Johan Boström, Mats Lilja, Michael Melin, Karl Olsson, Lena Ekström, Peter Bergman, Mikael Altun, Eric Rullman, and Thomas Gustafsson

The CC genotype of the vitamin D receptor (VDR) polymorphism TaqI rs731236 has previously been associated with a higher risk of developing myopathy compared to TT carriers. However, the mechanistic role of this polymorphism in skeletal muscle is not well defined. The effects of vitamin D on patients genotyped for the VDR polymorphism TaqI rs731236, comparing CC and TT carriers were evaluated. Primary human myoblasts isolated from 4 CC carriers were compared with myoblasts isolated from four TT carriers and treated with vitamin D in vitro. A dose-dependent inhibitory effect on myoblast proliferation and differentiation was observed concurrent with modifications of key myogenic regulatory factors. RNA sequencing revealed a vitamin D dose–response gene signature enriched with a higher number of VDR-responsive elements (VDREs) per gene. Interestingly, the greater the expression of muscle differentiation markers in myoblasts, the more pronounced was the vitamin D-mediated response to suppress genes associated with myogenic fusion and myotube formation. This novel finding provides a mechanistic explanation to the inconsistency regarding previous reports of the role of vitamin D in myoblast differentiation. No effects in myoblast proliferation, differentiation or gene expression were related to CC vs TT carriers. Our findings suggest that the VDR polymorphism TaqI rs731236 comparing CC vs TT carriers did not influence the effects of vitamin D on primary human myoblasts and that vitamin D inhibits myoblast proliferation and differentiation through key regulators of cell cycle progression. Future studies need to employ strategies to identify the primary responses of vitamin D that drive the cellular response towards quiescence.