Search Results

You are looking at 51 - 60 of 405 items for

  • Abstract: Aging x
  • Abstract: Autoimmune x
  • Abstract: Inflammation x
  • Abstract: Late effects of cancer treatment x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Chun-feng Lu, Xiao-qin Ge, Yan Wang, Jian-bin Su, Xue-qin Wang, Dong-mei Zhang, Feng Xu, Wang-shu Liu, and Min Su

Background

Prolonged heart rate-corrected QT (QTc) interval may reflect poor prognosis of patients with type 2 diabetes (T2D). Serum adenosine deaminase (ADA) levels are related to hyperglycemia, insulin resistance (IR) and inflammation, which may participate in diabetic complications. We investigated the association of serum ADA levels with prolonged QTc interval in a large-scale sample of patients with T2D.

Methods

In this cross-sectional study, a total of 492 patients with T2D were recruited. Serum ADA levels were determined by venous blood during fasting. QTc interval was estimated from resting 12-lead ECGs, and prolonged QTc interval was defined as QTc > 440 ms.

Results

In this study, the prevalence of prolonged QTc interval was 22.8%. Serum ADA levels were positively associated with QTc interval (r = 0.324, P < 0.0001). The proportion of participants with prolonged QTc interval increased significantly from 9.2% in the first tertile (T1) to 24.7% in the second tertile (T2) and 39.0% in the third tertile (T3) of ADA (P for trend < 0.001). After adjusting for other possible risk factors by multiple linear regression analysis, serum ADA level was still significantly associated with QTc interval (β = 0.217, t = 3.400, P < 0.01). Multivariate logistic regression analysis showed that female (OR 5.084, CI 2.379–10.864, P < 0.001), insulin-sensitizers treatment (OR 4.229, CI 1.290–13.860, P = 0.017) and ADA (OR 1.212, CI 1.094–1.343, P < 0.001) were independent contributors to prolonged QTc interval.

Conclusions

Serum ADA levels were independently associated with prolonged QTc interval in patients with T2D.

Open access

Marianna Martino, Paolo Falcioni, Giulia Giancola, Alessandro Ciarloni, Gianmaria Salvio, Francesca Silvetti, Augusto Taccaliti, and Giorgio Arnaldi

Objective

Dysnatremia is common in hospitalized patients, often worsening the prognosis in pneumopathies and critical illnesses. Information on coronavirus disease-19 (COVID-19)-related hyponatremia is partially conflicting, whereas data on hypernatremia in this context are scarce. We assessed, in a cohort of COVID-19 inpatients: the prevalence of sodium alterations at admission and throughout their hospitalization; their association with inflammation/organ damage indexes; their short-term prognostic impact.

Study design and methods

117 patients (81 males, 64 ± 13 years) hospitalized for COVID-19 between 1 March and 30 April 2020 were retrospectively followed-up for their first 21 days of stay by collecting all serum sodium measurements, basal CRP and serum lactate levels, maximum IL-6 and information on care setting, required ventilation, length of hospitalization, in-hospital death.

Results

At admission, 26.5% patients had hyponatremia, and 6.8% had hypernatremia. During their hospitalization, 13.7% patients experienced both disorders ('mixed dysnatremia'). Lower sodium levels at admission were correlated with higher C reactive protein (CRP) (P = 0.039) and serum lactate levels (P = 0.019), but not interleukin-6 (IL-6). Hypernatremia and a wider sodium variability were associated with maximum required ventilation, need for ICU assistance and duration of the hospitalization. Mean estimated time to Intensive Care Unit (ICU) admission was 20 days shorter in patients exposed to sodium alterations at any time of their hospital course (log-rank test P = 0.032).

Conclusions

Sodium alterations frequently affect hospitalized COVID-19 patients. Hyponatremia could indicate pulmonary involvement, whereas hypernatremia is associated to prolonged hospitalization and the need for intensive care/mechanical ventilation, particularly when resulting from prior hyponatremia. Optimizing in-hospital sodium balance is crucial to improve patients’ prognosis.

Open access

T P McVeigh, R J Mulligan, U M McVeigh, P W Owens, N Miller, M Bell, F Sebag, C Guerin, D S Quill, J B Weidhaas, M J Kerin, and A J Lowery

Introduction

MicroRNAs (miRNAs) are small noncoding RNA molecules that exert post-transcriptional effects on gene expression by binding with cis-regulatory regions in target messenger RNA (mRNA). Polymorphisms in genes encoding miRNAs or in miRNA–mRNA binding sites confer deleterious epigenetic effects on cancer risk. miR-146a has a role in inflammation and may have a role as a tumour suppressor. The polymorphism rs2910164 in the MIR146A gene encoding pre-miR-146a has been implicated in several inflammatory pathologies, including cancers of the breast and thyroid, although evidence for the associations has been conflicting in different populations. We aimed to further investigate the association of this variant with these two cancers in an Irish cohort.

Methods

The study group comprised patients with breast cancer (BC), patients with differentiated thyroid cancer (DTC) and unaffected controls. Germline DNA was extracted from blood or from saliva collected using the DNA Genotek Oragene 575 collection kit, using crystallisation precipitation, and genotyped using TaqMan-based PCR. Data were analysed using SPSS, v22.

Results

The total study group included 1516 participants. This comprised 1386 Irish participants; 724 unaffected individuals (controls), 523 patients with breast cancer (BC), 136 patients with differentiated thyroid cancer (DTC) and three patients with dual primary breast and thyroid cancer. An additional cohort of 130 patients with DTC from the South of France was also genotyped for the variant. The variant was detected with a minor allele frequency (MAF) of 0.19 in controls, 0.22 in BC and 0.27 and 0.26 in DTC cases from Ireland and France, respectively. The variant was not significantly associated with BC (per allele odds ratio = 1.20 (0.98–1.46), P = 0.07), but was associated with DTC in Irish patients (per allele OR = 1.59 (1.18–2.14), P = 0.002).

Conclusion

The rs2910164 variant in MIR146A is significantly associated with DTC, but is not significantly associated with BC in this cohort.

Open access

Natalio García-Honduvilla, Alberto Cifuentes, Miguel A Ortega, Marta Pastor, Garazi Gainza, Eusebio Gainza, Julia Buján, and Melchor Álvarez-Mon

Wound healing is a complex process that can be severely impaired due to pathological situations such as diabetes mellitus. Diabetic foot ulcers are a common complication of this pathology and are characterized by an excessive inflammatory response. In this work, the effects of local treatment with recombinant human epidermal growth factor (rhEGF) were studied using a full-thickness wound healing model in streptozotocin-induced diabetic rats. Wound healing process was assessed with different concentrations of rhEGF (0.1, 0.5, 2.0 and 8.0 µg/mL), placebo and both diabetic and non-diabetic controls (n = 53). The macroscopic healing observed in treated diabetic rats was affected by rhEGF concentration. Histologically, we also observed an improvement in the epithelialization, granulation tissue formation and maturation in treated groups, finding again the best response at doses of 0.5 and 2.0 µg/mL. Afterwards, the tissue immune response over time was assessed in diabetic rats using the most effective concentrations of rhEGF (0.5 and 2.0 µg/mL), compared to controls. The presence of macrophages, CD4+ T lymphocytes and CD8+ T lymphocytes, in the reparative tissue was quantified, and cytokine expression was measured by quantitative real-time PCR. rhEGF treatment caused a reduction in the number of infiltrating macrophages in the healing tissue of diabetic, as well as diminished activation of these leukocytes. These findings show that local administration of rhEGF improves the healing process of excisional wounds and the quality of the neoformed tissue in a dose-dependent manner. Besides, this treatment reduces the local inflammation associated with diabetic healing, indicating immuno-modulatory properties.

Open access

Helle Keinicke, Gao Sun, Caroline M Junker Mentzel, Merete Fredholm, Linu Mary John, Birgitte Andersen, Kirsten Raun, and Marina Kjaergaard

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

Open access

Estíbaliz Castillero, Ana Isabel Martín, Maria Paz Nieto-Bona, Carmen Fernández-Galaz, María López-Menduiña, María Ángeles Villanúa, and Asunción López-Calderón

Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.

Open access

Sandra N Slagter, Robert P van Waateringe, André P van Beek, Melanie M van der Klauw, Bruce H R Wolffenbuttel, and Jana V van Vliet-Ostaptchouk

Introduction

To evaluate the prevalence of metabolic syndrome (MetS) and its individual components within sex-, body mass index (BMI)- and age combined clusters. In addition, we used the age-adjusted blood pressure thresholds to demonstrate the effect on the prevalence of MetS and elevated blood pressure.

Subjects and methods

Cross-sectional data from 74,531 Western European participants, aged 18–79 years, were used from the Dutch Lifelines Cohort Study. MetS was defined according to the revised NCEP-ATPIII. Age-adjusted blood pressure thresholds were defined as recommended by the eight reports of the Joint National Committee (≥140/90 mmHg for those aged <60 years, and ≥150/90 mmHg for those aged ≥60 years).

Results

19.2% men and 12.1% women had MetS. MetS prevalence increased with BMI and age. Independent of BMI, abdominal obesity dominated MetS prevalence especially in women, while elevated blood pressure was already highly prevalent among young men. Applying age-adjusted blood pressure thresholds resulted in a 0.2–11.9% prevalence drop in MetS and 6.0–36.3% prevalence drop in elevated blood pressure, within the combined sex, BMI and age clusters.

Conclusions

We observed a gender disparity with age and BMI for the prevalence of MetS and, especially, abdominal obesity and elevated blood pressure. The strict threshold level for elevated blood pressure in the revised NCEP-ATPIII, results in an overestimation of MetS prevalence.

Open access

Sebastião Freitas de Medeiros, Márcia Marly Winck Yamamoto, Matheus Antônio Souto de Medeiros, Bruna Barcelo Barbosa, José Maria Soares Junior, and Edmund Chada Baracat

Objective

To verify whether aging can modify the clinical and biochemical characteristics of women with polycystic ovary syndrome (PCOS).

Material and methods

This observational cross-sectional study was conducted at the reproductive endocrinology clinics of Julio Muller University Hospital and Tropical Institute of Reproductive Medicine in Cuiabá, MT, Brazil, between 2003 and 2017. Both, 796 PCOS and 444 non-PCOS normal cycling women underwent the same examination. PCOS was diagnosed using the Rotterdam criteria as recommended for adolescent and adult subjects. Anthropometric, metabolic, and endocrinological modifications with aging were initially examined in the two groups: control and PCOS. Further analyses were performed after a 5-year age stratification of data throughout the reproductive period. All participants signed a consent form approved by the local ethical committee.

Results

Biomarkers of adiposity were more remarkable in African descendant PCOS women. Body weight, waist/hip ratio, fat mass, and BMI were higher in PCOS women and tended to increase at all 5 age-strata, between ≤19 and 35 years of age. Serum androgen levels decreased with aging, markedly in PCOS subjects (P < 0.01 for all age-strata comparisons), but remained elevated when compared with the levels found in controls. Carbohydrate markers, triglycerides, and total cholesterol tended to increase over time in PCOS (P < 0.01 for all age-strata comparisons). Total cholesterol also tended to increase with age in non-PCOS women (P = 0.041).

Conclusion

The present study has shown that the advancing age influences many features of PCOS women. Biochemical hyperandrogenism, the core criterion recommended in the current systems to define the syndrome, showed statistically significant tendencies to decrease with aging progression but did not normalize. The use of age-adjusted features for the diagnosis of PCOS are recommended.

Open access

Tingting Jia, Ya-nan Wang, Dongjiao Zhang, and Xin Xu

Diabetes-induced advanced glycation end products (AGEs) overproduction would result in compromised osseointegration of titanium implant and high rate of implantation failure. 1α,25-dihydroxyvitamin D3 (1,25VD3) plays a vital role in osteogenesis, whereas its effects on the osseointegration and the underlying mechanism are unclear. The purpose of this study was to investigate that 1,25VD3 might promote the defensive ability of osseointegration through suppressing AGEs/RAGE in type 2 diabetes mellitus. In animal study, streptozotocin-induced diabetic rats accepted implant surgery, with or without 1,25VD3 intervention for 12 weeks. After killing, the serum AGEs level, bone microarchitecture and biomechanical index of rats were measured systematically. In vitro study, osteoblasts differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase assay and Western blotting, after treatment with BSA, AGEs, AGEs with RAGE inhibitor and AGEs with 1,25VD3. And the expression of RAGE protein was detected to explore the mechanism. Results showed that 1,25VD3 could reverse the impaired osseointegration and mechanical strength, which possibly resulted from the increased AGEs. Moreover, 1,25VD3 could ameliorate AGEs-induced damage of cell osteogenic differentiation, as well as downregulating the RAGE expression. These data may provide a theoretical basis that 1,25VD3 could work as an adjuvant treatment against poor osseointegration in patients with type 2 diabetes mellitus.

Open access

Luca Boeri, Paolo Capogrosso, Walter Cazzaniga, Edoardo Pozzi, Luigi Candela, Federico Belladelli, Davide Oreggia, Eugenio Ventimiglia, Nicolò Schifano, Giuseppe Fallara, Marina Pontillo, Costantino Abbate, Emanuele Montanari, Francesco Montorsi, and Andrea Salonia

Objective:

We aimed to test the association between age, BMI and sex-hormone–binding globulin (SHBG) in a homogenous cohort of white-European men presenting for primary couple’s infertility.

Design:

Retrospective study.

Methods:

Data from 1547 infertile men were analysed. Health-significant comorbidities were scored with the Charlson comorbidity index (CCI). Fasting serum hormones were measured in every patient. Age was considered according to quartile groups (<33, 33-41, >41 years) and BMI as normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2) and obesity (>30 kg/m2). Descriptive statistics and linear regression analysis tested the associations between age, BMI and SHBG.

Results:

Median SHBG levels increased across quartiles of age and decreased along with BMI increases (all P < 0.001). For each year increase in age, SHBG increased 0.32 nmol/L; conversely, for each unit increase in BMI, SHBG decreased by 1.1 nmol/L (all P < 0.001). SHBG levels decline with increasing BMI was greater than SHBG progressive increase with age. Overall, BMI explained 3.0 times more of the variability in SHBG than did ageing. At multivariate linear model, age and BMI were the most significant factors influencing SHBG concentration (all P < 0.001), after accounting for CCI, albumin levels and smoking status.

Conclusions:

We found a wide distribution of SHBG concentrations across age and BMI values in primary infertile men. The association between BMI and lowered SHBG levels seems to be greater than the association of ageing with increased SHBG.