Search Results

You are looking at 1 - 10 of 136 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Athanasios D Anastasilakis, Marina Tsoli, Gregory Kaltsas, and Polyzois Makras

Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.

Open access

Alessandro Brancatella and Claudio Marcocci

Thyroid hormones stimulate bone turnover in adults by increasing osteoclastic bone resorption. TSH suppressive therapy is usually applied in patients with differentiated thyroid cancer (DTC) to improve the disease outcome. Over the last decades several authors have closely monitored the potential harm suffered by the skeletal system. Several studies and meta-analyses have shown that chronic TSH suppressive therapy is safe in premenopausal women and men. Conversely, in postmenopausal women TSH suppressive therapy is associated with a decrease of bone mineral density, deterioration of bone architecture (quantitative CT, QCT; trabecular bone score, TBS), and, possibly, an increased risk of fractures. The TSH receptor is expressed in bone cells and the results of experimental studies in TSH receptor knockout mice and humans on whether low TSH levels, as opposed to solely high thyroid hormone levels, might contribute to bone loss in endogenous or exogenous thyrotoxicosis remain controversial. Recent guidelines on the use of TSH suppressive therapy in patients with DTC give value not only to its benefit on the outcome of the disease, but also to the risks associated with exogenous thyrotoxicosis, namely menopause, osteopenia or osteoporosis, age >60 years, and history of atrial fibrillation. Bone health (BMD and/or preferably TBS) should be evaluated in postmenopausal women under chronic TSH suppressive therapy or in those patients planning to be treated for several years. Antiresorptive therapy could also be considered in selected cases (increased risk of fracture or significant decline of BMD/TBS during therapy) to prevent bone loss.

Open access

Keina Nishio, Akiko Tanabe, Risa Maruoka, Kiyoko Nakamura, Masaaki Takai, Tatsuharu Sekijima, Satoshi Tunetoh, Yoshito Terai, and Masahide Ohmichi

Objective

Although surgical menopause may increase the risks of osteoporosis, few studies have investigated the influence of chemotherapy and radiation therapy. The aim of this study is to evaluate the effects of treatments for gynecological malignancies on bone mineral density (BMD).

Methods

This study enrolled 35 premenopausal women (15 ovarian cancers (OCs), 9 endometrial cancers (ECs), and 11 cervical cancers (CCs)) who underwent surgical treatment that included bilateral oophorectomy with or without adjuvant platinum-based chemotherapy in OC and EC patients, or concurrent chemo-radiation therapy (CCRT) in CC patients according to the established protocols at the Osaka Medical College Hospital between 2006 and 2008. The BMD of the lumbar spine (L1–L4) was measured by dual-energy X-ray absorptiometry, and urine cross-linked telopeptides of type I collagen (NTx) and bone alkaline phosphatase (BAP) were assessed for evaluation of bone resorption and bone formation respectively. These assessments were performed at baseline and 12 months after treatment.

Results

Although the serum BAP was significantly increased only in the CC group, a rapid increase in the bone resorption marker urinary NTx was observed in all groups. The BMD, 12 months after CCRT was significantly decreased in the CC group at 91.9±5.9% (P<0.05 in comparison to the baseline).

Conclusion

This research suggests that anticancer therapies for premenopausal women with gynecological malignancies increase bone resorption and may reduce BMD, particularly in CC patients who have received CCRT. Therefore, gynecologic cancer survivors should be educated about these potential risks and complications.

Open access

Kaiyu Pan, Chengyue Zhang, Xiaocong Yao, and Zhongxin Zhu

Aim

Ensuring adequate calcium (Ca) intake during childhood and adolescence is critical to acquire good peak bone mass to prevent osteoporosis during older age. As one of the primary strategies to build and maintain healthy bones, we aimed to determine whether dietary Ca intake has an influence on bone mineral density (BMD) in children and adolescents.

Methods

We conducted a cross-sectional study composed of 10,092 individuals from the National Health and Nutrition Examination Survey (NHANES). Dietary Ca intake and total BMD were taken as independent and dependent variables, respectively. To evaluate the association between them, we conducted weighted multivariate linear regression models and smooth curve fittings.

Results

There was a significantly positive association between dietary Ca intake and total BMD. The strongest association was observed in 12–15 year old whites, 8–11 year old and 16–19 year old Mexican Americans, and 16–19 year old individuals from other race/ethnicity, in whom each quintile of Ca intake was increased. We also found that there were significant inflection points in females, blacks, and 12–15 year old adolescents group, which means that their total BMD would decrease when the dietary Ca intake was more than 2.6–2.8 g/d.

Conclusions

This cross-sectional study indicated that a considerable proportion of children and adolescents aged 8–19 years would attain greater total BMD if they increased their dietary Ca intake. However, higher dietary Ca intake (more than 2.6–2.8 g/d) is associated with lower total BMD in females, blacks, and 12–15 year old adolescents group.

Open access

Raja Padidela, Moira S Cheung, Vrinda Saraff, and Poonam Dharmaraj

X-linked hypophosphataemia (XLH) is caused by a pathogenic variant in the PHEX gene, which leads to elevated circulating FGF23. High FGF23 causes hypophosphataemia, reduced active vitamin D concentration and clinically manifests as rickets in children and osteomalacia in children and adults. Conventional therapy for XLH includes oral phosphate and active vitamin D analogues but does not specifically treat the underlying pathophysiology of elevated FGF23-induced hypophosphataemia. In addition, adherence to conventional therapy is limited by frequent daily dosing and side effects such as gastrointestinal symptoms, secondary hyperparathyroidism and nephrocalcinosis. Burosumab, a recombinant human IgG1 MAB that binds to and inhibits the activity of FGF23, is administered subcutaneously every 2 weeks. In clinical trials (phase 2 and 3) burosumab was shown to improve phosphate homeostasis that consequently resolves the skeletal/non-skeletal manifestations of XLH. Burosumab was licensed in Europe (February 2018) with the National Institute for Health and Care Excellence, UK approving use within its marketing authorisation in October 2018. In this publication, the British Paediatric and Adolescent Bone Group (BPABG) reviewed current evidence and provide expert recommendations for care pathway and management of XLH with burosumab.

Open access

Emmanuelle Noirrit, Mélissa Buscato, Marion Dupuis, Bernard Payrastre, Coralie Fontaine, Jean-François Arnal, and Marie-Cécile Valera

Estrogen–progestin therapy was previously considered as the standard of care for managing bothersome symptoms associated with menopause, but it increases risks of breast cancer and of thromboembolism. The combination of conjugated estrogen (CE) with bazedoxifene (BZA) named tissue-selective estrogen complex (TSEC) was designed to minimize or even abrogate the undesirable effects on breast, while maintaining the beneficial effects such as prevention of osteoporosis and suppression of climacteric symptoms. The risk on thromboembolism associated with TSEC is unknown, although the clinical available data are reassuring. The aim of this study was to define the impact of a chronic administration of CE, BZA or CE + BZA on hemostasis and thrombosis in ovariectomized mice. As expected, CE, but not BZA neither CE + BZA, induced uterine and vagina hypertrophy. As previously demonstrated for 17β-estradiol (E2), we found that CE (i) increased tail-bleeding time, (ii) prevented occlusive thrombus formation in injured carotid artery and (iii) protected against collagen/epinephrine-induced thromboembolism. Thus, whereas BZA antagonized CE action on reproductive tissues, it had no impact on the effect of CE on hemostasis, thromboembolism and arterial thrombosis in mice. CE + BZA shared the anti-thrombotic actions of CE in these mouse models. If a similar process is at work in women, CE combined with BZA could contribute to minimize the risk of thrombosis associated with hormone replacement therapy.

Open access

E M Winter, A Ireland, N C Butterfield, M Haffner-Luntzer, M-N Horcajada, A G Veldhuis-Vlug, L Oei, G Colaianni, and N Bonnet

In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here, we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process.

Open access

E Vignali, F Cetani, S Chiavistelli, A Meola, F Saponaro, R Centoni, L Cianferotti, and C Marcocci

We investigated the prevalence of normocalcemic primary hyperparathyroidism (NPHPT) in the adult population living in a village in Southern Italy. All residents in 2010 (n=2045) were invited by calls and 1046 individuals accepted to participate. Medical history, calcium intake, calcium, albumin, creatinine, parathyroid hormone (PTH) and 25OHD were evaluated. NPHPT was defined by normal albumin-adjusted serum calcium, elevated plasma PTH, and exclusion of common causes of secondary hyperparathyroidism (SHPT) (serum 25OHD <30 ng/ml, estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2 and thiazide diuretics use), overt gastrointestinal and metabolic bone diseases. Complete data were available for 685 of 1046 subjects. Twenty subjects did not meet the inclusion criteria and 341 could not be evaluated because of thawing of plasma samples. Classical PHPT was diagnosed in four women (0.58%). For diagnosing NPHPT the upper normal limit of PTH was established in the sample of the population (n=100) who had 25OHD ≥30 ng/ml and eGFR ≥60 ml/min per 1.73 m2 and was set at the mean+3s.d. Three males (0.44%) met the diagnostic criteria of NPHPT. These subjects were younger and with lower BMI than those with classical PHPT. Our data suggest, in line with previous studies, that NPHPT might be a distinct clinical entity, being either an early phenotype of asymptomatic PHPT or a distinct variant of it. However, we cannot exclude that NPHPT might also represent an early phase of non-classical SHPT, since other variables, in addition to those currently taken into account for the diagnosis of NPHPT, might cumulate in a normocalcemic subject to increase PTH secretion.

Open access

Petar Milovanovic and Björn Busse

An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.

Open access

Clarissa Souza Barthem, Camila Lüdke Rossetti, Denise P Carvalho, and Wagner Seixas da-Silva

Estradiol has been used to prevent metabolic diseases, bone loss and menopausal symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed for type 2 diabetes mellitus and lowers food intake and body mass while improving insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, insulin resistance and changes in the lipid profile. Thus, the aim of this work was to evaluate whether metformin could prevent the early metabolic dysfunction that occurs early after ovariectomy. Female Wistar rats were divided into the following groups: SHAM-operated (SHAM), ovariectomized (OVX), ovariectomized + estradiol (OVX + E2) and ovariectomized + metformin (OVX + M). Treatment with metformin diminished approximately 50% of the mass gain observed in ovariectomized animals and reduced both the serum and hepatic triglyceride levels. The hepatic levels of phosphorylated AMP-activated protein kinase (pAMPK) decreased after OVX, and the expression of the inactive form of hepatic acetyl-CoA carboxylase (ACC) was also reduced. Metformin was able to increase the levels of pAMPK in the liver of OVX animals, sustaining the balance between the inactive and total forms of ACC. Estradiol effects were similar to those of metformin but with different proportions. Our results suggest that metformin ameliorates the early alterations of metabolic parameters and rescues hepatic AMPK phosphorylation and ACC inactivation observed in ovariectomized rats.