Search Results

You are looking at 91 - 100 of 166 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Eva Novoa, Marcel Gärtner, and Christoph Henzen

Objective

The study aimed to assess the possible systemic effects of intratympanic dexamethasone (IT-Dex) on the hypothalamic–pituitary–adrenal (HPA) axis, inflammation, and bone metabolism.

Design

A prospective cohort study including 30 adult patients of a tertiary referral ENT clinic treated with 9.6 mg IT-Dex over a period of 10 days was carried out.

Methods

Effects on plasma and salivary cortisol concentrations (basal and after low-dose (1 μg) ACTH stimulation), peripheral white blood cell count, and biomarkers for bone turnover were measured before (day 0) and after IT-Dex (day 16). Additional measurements for bone turnover were performed 5 months after therapy. Clinical information and medication with possible dexamethasone interaction were recorded.

Results

IT-Dex was well tolerated, and no effect was detected on the HPA axis (stimulated plasma and salivary cortisol concentration on day 0: 758±184 and 44.5±22.0 nmol/l; day 16: 718±154 and 39.8±12.4 nmol/l; P=0.58 and 0.24 respectively). Concentrations of osteocalcin (OC) and bone-specific alkaline phosphatase (BSAP) did not differ after dexamethasone (OC on days 0 and 16 respectively: 24.1±10.5 and 23.6±8.8 μg/l; BSAP on day 0, 16, and after 5 months respectively: 11.5±4.2, 10.3±3.4, and 12.6±5.06 μg/l); similarly, there was no difference in the peripheral white blood cell count (5.7×1012/l and 6.1×1012/l on days 0 and 16 respectively).

Conclusions

IT-Dex therapy did not interfere with endogenous cortisol secretion or bone metabolism.

Open access

Sylvia Thiele, Anke Hannemann, Maria Winzer, Ulrike Baschant, Heike Weidner, Matthias Nauck, Rajesh V Thakker, Martin Bornhäuser, Lorenz C Hofbauer, and Martina Rauner

Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (−40%, P < 0.01 and −26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans.

Open access

Ghazala Zaidi, Vijayalakshmi Bhatia, Saroj K Sahoo, Aditya Narayan Sarangi, Niharika Bharti, Li Zhang, Liping Yu, Daniel Eriksson, Sophie Bensing, Olle Kämpe, Nisha Bharani, Surendra Kumar Yachha, Anil Bhansali, Alok Sachan, Vandana Jain, Nalini Shah, Rakesh Aggarwal, Amita Aggarwal, Muthuswamy Srinivasan, Sarita Agarwal, and Eesh Bhatia

Objective

Autoimmune polyendocrine syndrome type 1 (APS1) is a rare autosomal recessive disorder characterized by progressive organ-specific autoimmunity. There is scant information on APS1 in ethnic groups other than European Caucasians. We studied clinical aspects and autoimmune regulator (AIRE) gene mutations in a cohort of Indian APS1 patients.

Design

Twenty-three patients (19 families) from six referral centres in India, diagnosed between 1996 and 2016, were followed for [median (range)] 4 (0.2–19) years.

Methods

Clinical features, mortality, organ-specific autoantibodies and AIRE gene mutations were studied.

Results

Patients varied widely in their age of presentation [3.5 (0.1–17) years] and number of clinical manifestations [5 (2–11)]. Despite genetic heterogeneity, the frequencies of the major APS1 components (mucocutaneous candidiasis: 96%; hypoparathyroidism: 91%; primary adrenal insufficiency: 55%) were similar to reports in European series. In contrast, primary hypothyroidism (23%) occurred more frequently and at an early age, while kerato-conjunctivitis, urticarial rash and autoimmune hepatitis were uncommon (9% each). Six (26%) patients died at a young age [5.8 (3–23) years] due to septicaemia, hepatic failure and adrenal/hypocalcaemic crisis from non-compliance/unexplained cause. Interferon-α and/or interleukin-22 antibodies were elevated in all 19 patients tested, including an asymptomatic infant. Eleven AIRE mutations were detected, the most common being p.C322fsX372 (haplotype frequency 37%). Four mutations were novel, while six others were previously described in European Caucasians.

Conclusions

Indian APS1 patients exhibited considerable genetic heterogeneity and had highly variable clinical features. While the frequency of major manifestations was similar to that of European Caucasians, other features showed significant differences. A high mortality at a young age was observed.

Open access

Earn H Gan, Wendy Robson, Peter Murphy, Robert Pickard, Simon Pearce, and Rachel Oldershaw

Background

The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex.

Methods

Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR.

Results

The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers.

Conclusion

Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison’s disease.

Open access

Ann-Kristin Picke, Graeme Campbell, Nicola Napoli, Lorenz C Hofbauer, and Martina Rauner

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40–70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.

Open access

Rui-yi Tang, Rong Chen, Miao Ma, Shou-qing Lin, Yi-wen Zhang, and Ya-ping Wang

Objective

To evaluate the clinical features of Chinese women with idiopathic hypogonadotropic hypogonadism (IHH).

Methods

We retrospectively reviewed the clinical characteristics, laboratory and imaging findings, therapeutic management and fertility outcomes of 138 women with IHH. All patients had been treated and followed up at an academic medical centre during 1990–2016.

Results

Among the 138 patients, 82 patients (59.4%) were diagnosed with normosmic IHH and 56 patients (40.6%) were diagnosed with Kallmann syndrome (KS). The patients with IHH experienced occasional menses (4.3%), spontaneous thelarche (45.7%) or spontaneous pubarche (50.7%). Women with thelarche had a higher percentage of pubarche (P< 0.001) and higher gonadotropin concentrations (P< 0.01). Olfactory bulb/sulci abnormalities were found during the magnetic resonance imaging (MRI) of all patients with KS. Most patients with IHH had osteopenia and low bone age. Among the 16 women who received gonadotropin-releasing hormone treatment, ovulation induction or assisted reproductive technology, the clinical pregnancy rate was 81.3% and the live birth rate was 68.8%.

Conclusions

The present study revealed that the phenotypic spectrum of women with IHH is broader than typical primary amenorrhoea with no secondary sexual development, including occasional menses, spontaneous thelarche or pubarche. MRI of the olfactory system can facilitate the diagnosis of KS. Pregnancy can be achieved after receiving appropriate treatment.

Open access

Tingting Jia, Ya-nan Wang, Dongjiao Zhang, and Xin Xu

Diabetes-induced advanced glycation end products (AGEs) overproduction would result in compromised osseointegration of titanium implant and high rate of implantation failure. 1α,25-dihydroxyvitamin D3 (1,25VD3) plays a vital role in osteogenesis, whereas its effects on the osseointegration and the underlying mechanism are unclear. The purpose of this study was to investigate that 1,25VD3 might promote the defensive ability of osseointegration through suppressing AGEs/RAGE in type 2 diabetes mellitus. In animal study, streptozotocin-induced diabetic rats accepted implant surgery, with or without 1,25VD3 intervention for 12 weeks. After killing, the serum AGEs level, bone microarchitecture and biomechanical index of rats were measured systematically. In vitro study, osteoblasts differentiation capacity was analyzed by alizarin red staining, alkaline phosphatase assay and Western blotting, after treatment with BSA, AGEs, AGEs with RAGE inhibitor and AGEs with 1,25VD3. And the expression of RAGE protein was detected to explore the mechanism. Results showed that 1,25VD3 could reverse the impaired osseointegration and mechanical strength, which possibly resulted from the increased AGEs. Moreover, 1,25VD3 could ameliorate AGEs-induced damage of cell osteogenic differentiation, as well as downregulating the RAGE expression. These data may provide a theoretical basis that 1,25VD3 could work as an adjuvant treatment against poor osseointegration in patients with type 2 diabetes mellitus.

Open access

Sarah Zaheer, Kayla Meyer, Rebecca Easly, Omar Bayomy, Janet Leung, Andrew W Koefoed, Mahyar Heydarpour, Roy Freeman, and Gail K Adler

Glucocorticoid use is the most common cause of secondary osteoporosis. Poor skeletal health related to glucocorticoid use is thought to involve inhibition of the Wnt/β-catenin signaling pathway, a key pathway in osteoblastogenesis. Sclerostin, a peptide produced primarily by osteocytes, is an antagonist of the Wnt/β-catenin signaling pathway, raising the possibility that sclerostin is involved in glucocorticoids’ adverse effects on bone. The aim of this study was to determine whether an acute infusion of cosyntropin (i.e. ACTH(1–24)), which increases endogenous cortisol, increases serum sclerostin levels as compared to a placebo infusion. This study was performed using blood samples obtained from a previously published, double-blind, placebo-controlled, randomized, cross-over study among healthy men and women who received infusions of placebo or cosyntropin after being supine and fasted overnight (ClinicalTrials.gov NCT02339506). A total of 17 participants were analyzed. There was a strong correlation (R2 = 0.65, P < 0.0001) between the two baseline sclerostin measurements measured at the start of each visit, and men had a significantly higher average baseline sclerostin compared to women. As anticipated, cosyntropin significantly increased serum cortisol levels, whereas cortisol levels fell during placebo infusion, consistent with the diurnal variation in cortisol. There was no significant effect of cosyntropin as compared to placebo infusions on serum sclerostin over 6–24 h (P = 0.10). In conclusion, this randomized, placebo-controlled study was unable to detect a significant effect of a cosyntropin infusion on serum sclerostin levels in healthy men and women.

Open access

Mojca Zerjav Tansek, Ana Bertoncel, Brina Sebez, Janez Zibert, Urh Groselj, Tadej Battelino, and Magdalena Avbelj Stefanija

Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.

Open access

Rimesh Pal, Sanjay Kumar Bhadada, Awesh Singhare, Anil Bhansali, Sadishkumar Kamalanathan, Manoj Chadha, Phulrenu Chauhan, Ashwani Sood, Vandana Dhiman, Dinesh Chandra Sharma, Uma Nahar Saikia, Debajyoti Chatterjee, and Vikas Agashe

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by recalcitrant hypophosphatemia. Reports from the Indian subcontinent are scarce, with most being single center experiences involving few patients. Herein, we conducted a retrospective analysis of 30 patients of TIO diagnosed at three tertiary care hospitals in India. Patients with persistent hypophosphatemia (despite correction of hypovitaminosis D), normocalcemia, elevated alkaline phosphatase, low TmP/GFR and elevated or ‘inappropriately normal’ FGF23 levels were labeled as having TIO. They were sequentially subjected to functional followed by anatomical imaging. Patients with a well-localized tumor underwent excision; others were put on phosphorous and calcitriol supplementation. The mean age at presentation was 39.6 years with female:male ratio of 3:2. Bone pain (83.3%) and proximal myopathy (70%) were the chief complaints; 40% of cases had fractures. The mean delay in diagnosis was 3.8 years. Tumors were clinically detectable in four patients (13.3%). The mean serum phosphate was 0.50 mmol/L with a median serum FGF23 level of 518 RU/mL. Somatostatin receptor-based scintigraphy was found to be superior to FDG-PET in tumor localization. Lower extremities were the most common site of the tumor (72%). Tumor size was positively correlated with serum FGF23 levels. Twenty-two patients underwent tumor resection and 16 of them had phosphaturic mesenchymal tumors. Surgical excision led to cure in 72.7% of patients whereas disease persistence and disease recurrence were seen in 18.2% and 9.1% of cases, respectively. At the last follow-up, serum phosphate in the surgically treated group was significantly higher than in the medically managed group.