Search Results

You are looking at 51 - 60 of 164 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Changwei Liu, Jingwen Wang, Yuanyuan Wan, Xiaona Xia, Jian Pan, Wei Gu, and Mei Li

Background

To investigate the relationship 25-hydroxy vitamin D (25OHD) level among children and in children with type 1 diabetes mellitus (T1DM).

Methods

A case–control study was conducted to compare the serum 25OHD levels between cases and controls. This study recruited 296 T1DM children (106 newly diagnosed T1DM patients and 190 established T1DM patients), and 295 age- and gender-matched healthy subjects as controls.

Results

The mean serum 25OHD in T1DM children was 48.69 ± 15.26 nmol/L and in the controls was 57.93 ± 19.03 nmol/L. The mean serum 25OHD in T1DM children was lower than that of controls (P < 0.01). The mean serum 25OHD level (50.42 ± 14.74 nmol/L) in the newly diagnosed T1DM children was higher than that (47.70 ± 15.50 nmol/L) in the established T1DM children but the difference was not statistically significant (P = 0.16). HbA1c values were associated with 25OHD levels in established T1DM children (r = 0.264, P < 0.01), and there was no association between 25OHD and HbA1c in newly diagnosed T1DM children (r = 0.164; P > 0.05).

Conclusion

Vitamin D deficiency is common in T1DM children, and it should be worthy of attention on the lack of vitamin D in established T1DM children.

Open access

Malachi J McKenna and Barbara F Murray

Objective

The recommended daily intakes of vitamin D according to the recent Clinical Practice Guideline (CPG) of the Endocrine Society are three- to fivefold higher than the Institute of Medicine (IOM) report. We speculated that these differences could be explained by different mathematical approaches to the vitamin D dose response.

Methods

Studies were selected if the daily dose was ≤2000 IU/day, the duration exceeded 3 months, and 25-hydroxyvitamin D (25OHD) concentrations were measured at baseline and post-therapy. The rate constant was estimated according to the CPG approach. The achieved 25OHD result was estimated according to the following: i) the regression equation approach of the IOM; ii) the regression approach of the Vitamin D Supplementation in Older Subjects (ViDOS) study; and iii) the CPG approach using a rate constant of 2.5 (CPG2.5) and a rate constant of 5.0 (CPG5.0). The difference between the expected and the observed 25OHD result was expressed as a percentage of observed and analyzed for significance against a value of 0% for the four groups.

Results

Forty-one studies were analyzed. The mean (95% CI) rate constant was 5.3 (4.4–6.2) nmol/l per 100 IU per day, on average twofold higher than the CPG rate constant. The mean (95% CI) for the difference between the expected and observed expressed as a percentage of observed was as follows: i) IOM, −7 (−16,+2)% (t=1.64, P=0.110); ii) ViDOS, +2 (−8,+12)% (t=0.40, P=0.69); iii) CPG2.5, −21 (−27,−15)% (t=7.2, P<0.0001); and iv) CPG5.0+3 (−4,+10)% (t=0.91, P=0.366).

Conclusion

The CPG ‘rule of thumb’ should be doubled to 5.0 nmol/l (2.0 ng/ml) per 100 IU per day, adopting a more risk-averse position.

Open access

Alexander V Amram, Stephen Cutie, and Guo N Huang

Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.

Open access

Søs Dragsbæk Larsen, Christine Dalgård, Mathilde Egelund Christensen, Sine Lykkedegn, Louise Bjørkholt Andersen, Marianne Andersen, Dorte Glintborg, and Henrik Thybo Christesen

Background

Low foetal vitamin D status may be associated with higher blood pressure (BP) in later life.

Objective

To examine whether serum 25-hydroxyvitamin D2+3 (s-25OHD) in cord and pregnancy associates with systolic and diastolic BP (SBP; DBP) in children up to 3 years of age.

Design

Prospective, population-based cohort study.

Methods

We included 1594 singletons from the Odense Child Cohort with available cord s-25OHD and BP data at median age 3.7 months (48% girls), 18.9 months (44% girls) or 3 years (48% girls). Maternal s-25OHD was also assessed at gestational ages 12 and 29 weeks. Multiple regression models were stratified by sex a priori and adjusted for maternal educational level, season of birth and child height, weight and age.

Results

In 3-year-old girls, SBP decreased with −0.7 mmHg (95% CI −1.1; −0.3, P = 0.001) and DBP with −0.4 mmHg (95% CI −0.7; −0.1, P = 0.016) for every 10 nmol/L increase in cord s-25OHD in adjusted analyses. Moreover, the adjusted odds of having SBP >90th percentile were reduced by 30% for every 10 nmol/L increase in cord s-25OHD (P = 0.004) and by 64% for cord s-25OHD above the median 45.1 nmol/L (P = 0.02). Similar findings were observed between pregnancy s-25OHD and 3-year SBP, cord s-25OHD and SBP at 18.9 months, and cord s-25OHD and DBP at 3 years. No consistent associations were observed between s-25OHD and BP in boys.

Conclusion

Cord s-25OHD was inversely associated with SBP and DBP in young girls, but not in boys. Higher vitamin D status in foetal life may modulate BP in young girls. The sex difference remains unexplained.

Open access

Athanasios D Anastasilakis, Marina Tsoli, Gregory Kaltsas, and Polyzois Makras

Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.

Open access

June Young Choi, Jin Wook Yi, Jun Hyup Lee, Ra-Yeong Song, Hyeongwon Yu, Hyungju Kwon, Young Jun Chai, Su-jin Kim, and Kyu Eun Lee

The purpose of this study was to assess the relationship between vitamin D receptor gene (VDR) expression and prognostic factors in papillary thyroid cancer (PTC). mRNA sequencing and somatic mutation data from The Cancer Genome Atlas (TCGA) were analyzed. VDR mRNA expression was compared to clinicopathologic variables by linear regression. Tree-based classification was applied to find cutoff and patients were split into low and high VDR group. Logistic regression, Kaplan–Meier analysis, differentially expressed gene (DEG) test and pathway analysis were performed to assess the differences between two VDR groups. VDR mRNA expression was elevated in PTC than that in normal thyroid tissue. VDR expressions were high in classic and tall-cell variant PTC and lateral neck node metastasis was present. High VDR group was also associated with classic and tall cell subtype, AJCC stage IV and lower recurrence-free survival. DEG test reveals that 545 genes were upregulated in high VDR group. Thyroid cancer-related pathways were enriched in high VDR group in pathway analyses. VDR mRNA overexpression was correlated with worse prognostic factors such as subtypes of papillary thyroid carcinoma that are known to be worse prognosis, lateral neck node metastasis, advanced stage and recurrence-free survival.

Open access

Ozlem Atan Sahin, Damla Goksen, Aysel Ozpinar, Muhittin Serdar, and Huseyin Onay

Background

There have been studies focused on FokI, BsmI, ApaI and TaqI polymorphisms of the vitamin D receptor (VDR) gene and susceptibility to type 1 diabetes mellitus with controversial results.

Methods

This present study is a meta-analysis investigating the association between FokI, ApaI, TaqI and BsmI polymorphisms of VDR gene and type 1 DM in children. A literature search was performed using Medline, EMBASE, Cochrane and PubMed. Any study was considered eligible for inclusion if at least one of FokI, ApaI, TaqI and BsmI polymorphisms was determined, and outcome was type 1 DM at pediatric age.

Results

A total of 9 studies comprising 1053 patients and 1017 controls met the study inclusion criteria. The pooled odds ratios (ORs) of the FokI, ApaI, TaqI and BsmI polymorphisms were combined and calculated. Forest plots and funnel plots of the OR value distributions were drawn. Our meta-analysis has demonstrated statistically significant associations between DM1 and VDR genotypes, BsmIBB (P < 0.05), BsmIBb, (P < 0.05), BsmIbb (P < 0.05), TaqITT (P < 0.05) and TaqItt (P < 0.05) in children.

Conclusion

The results indicated that BsmIBB, BsmIBb and TaqItt polymorphisms were associated with an increased risk of type 1 DM, whereas BsmIbb and TaqITT had protective effect for type 1 DM in children.

Open access

Federica Saponaro, Alessandro Saba, Sabina Frascarelli, Concetta Prontera, Aldo Clerico, Marco Scalese, Maria Rita Sessa, Filomena Cetani, Simona Borsari, Elena Pardi, Antonella Marvelli, Claudio Marcocci, Claudio Passino, and Riccardo Zucchi

Objectives

The aims of this paper were to evaluate the levels of Vitamin D (VitD) in patients with heart failure (HF), compared to a control group, to assess the effects of VitD on HF outcome and to compare VitD measurement between LIAISON immunoassay and HPLC-MS-MS methods in this population.

Design and Methods

We collected clinical, biochemical and outcome data from 247 patients with HF and in a subgroup of 151 patients, we measured VitD both with LIAISON and HPLC-MS-MS.

Results

HF patients had statistically lower 25OHD levels (45.2 ± 23.7 nmol/L vs 58.2 ± 24.0 nmol/L, P < 0.001) and a statistically higher prevalence of VitD insufficiency (61.1% vs 39.5%, P < 0.001) and deficiency (24.7% vs 6.6%, P < 0.001), compared to healthy controls. There was a significant inverse relationship between baseline 25OHD and risk of HF-related death, with a HR of 0.59 (95% CI 0.37–0.92, P = 0.02), confirmed in a multivariate adjusted analysis. Kaplan–Meier survival analyses showed that VitD insufficiency was associated with reduced survival in HF patients (log rank P = 0.017). There was a good agreement between LIAISON and HPLC-MS-MS (Cohen’s kappa coefficient 0.70), but the prevalence of VitD insufficiency was significantly higher with the former compared to the latter method (58.3%, n = 88 vs 55.6%, n = 84, P < 0.001). LIAISON underestimated the 25OHD levels and showed a mean relative bias of −0.739% with 95% of limits of agreement (−9.00 to +7.52%), when compared to HPLC-MS-MS.

Conclusions

25OHD levels adequately measured by HPLC-MS-MS showed to be low in HF population and to be correlated with HF-related risk of death.

Open access

Alessandro Brancatella and Claudio Marcocci

Thyroid hormones stimulate bone turnover in adults by increasing osteoclastic bone resorption. TSH suppressive therapy is usually applied in patients with differentiated thyroid cancer (DTC) to improve the disease outcome. Over the last decades several authors have closely monitored the potential harm suffered by the skeletal system. Several studies and meta-analyses have shown that chronic TSH suppressive therapy is safe in premenopausal women and men. Conversely, in postmenopausal women TSH suppressive therapy is associated with a decrease of bone mineral density, deterioration of bone architecture (quantitative CT, QCT; trabecular bone score, TBS), and, possibly, an increased risk of fractures. The TSH receptor is expressed in bone cells and the results of experimental studies in TSH receptor knockout mice and humans on whether low TSH levels, as opposed to solely high thyroid hormone levels, might contribute to bone loss in endogenous or exogenous thyrotoxicosis remain controversial. Recent guidelines on the use of TSH suppressive therapy in patients with DTC give value not only to its benefit on the outcome of the disease, but also to the risks associated with exogenous thyrotoxicosis, namely menopause, osteopenia or osteoporosis, age >60 years, and history of atrial fibrillation. Bone health (BMD and/or preferably TBS) should be evaluated in postmenopausal women under chronic TSH suppressive therapy or in those patients planning to be treated for several years. Antiresorptive therapy could also be considered in selected cases (increased risk of fracture or significant decline of BMD/TBS during therapy) to prevent bone loss.

Open access

Keina Nishio, Akiko Tanabe, Risa Maruoka, Kiyoko Nakamura, Masaaki Takai, Tatsuharu Sekijima, Satoshi Tunetoh, Yoshito Terai, and Masahide Ohmichi

Objective

Although surgical menopause may increase the risks of osteoporosis, few studies have investigated the influence of chemotherapy and radiation therapy. The aim of this study is to evaluate the effects of treatments for gynecological malignancies on bone mineral density (BMD).

Methods

This study enrolled 35 premenopausal women (15 ovarian cancers (OCs), 9 endometrial cancers (ECs), and 11 cervical cancers (CCs)) who underwent surgical treatment that included bilateral oophorectomy with or without adjuvant platinum-based chemotherapy in OC and EC patients, or concurrent chemo-radiation therapy (CCRT) in CC patients according to the established protocols at the Osaka Medical College Hospital between 2006 and 2008. The BMD of the lumbar spine (L1–L4) was measured by dual-energy X-ray absorptiometry, and urine cross-linked telopeptides of type I collagen (NTx) and bone alkaline phosphatase (BAP) were assessed for evaluation of bone resorption and bone formation respectively. These assessments were performed at baseline and 12 months after treatment.

Results

Although the serum BAP was significantly increased only in the CC group, a rapid increase in the bone resorption marker urinary NTx was observed in all groups. The BMD, 12 months after CCRT was significantly decreased in the CC group at 91.9±5.9% (P<0.05 in comparison to the baseline).

Conclusion

This research suggests that anticancer therapies for premenopausal women with gynecological malignancies increase bone resorption and may reduce BMD, particularly in CC patients who have received CCRT. Therefore, gynecologic cancer survivors should be educated about these potential risks and complications.