Thyroid hormones have a central role in cardiovascular homeostasis. In myocardium, these hormones stimulate both diastolic myocardial relaxation and systolic myocardial contraction, have a pro-angiogenic effect and an important role in extracellular matrix maintenance. Thyroid hormones modulate cardiac mitochondrial function. Dysfunction of thyroid axis impairs myocardial bioenergetic status. Both overt and subclinical hypothyroidism are associated with a higher incidence of coronary events and an increased risk of heart failure progression. Endothelial function is also impaired in hypothyroid state, with decreased nitric oxide-mediated vascular relaxation. In heart disease, particularly in ischemic heart disease, abnormalities in thyroid hormone levels are common and are an important factor to be considered. In fact, low thyroid hormone levels should be interpreted as a cardiovascular risk factor. Regarding ischemic heart disease, during the late post-myocardial infarction period, thyroid hormones modulate left ventricular structure, function and geometry. Dysfunction of thyroid axis might even be more prevalent in the referred condition since there is an upregulation of type 3 deiodinase in myocardium, producing a state of local cardiac hypothyroidism. In this focused review, we summarize the central pathophysiological and clinical links between altered thyroid function and ischemic heart disease. Finally, we highlight the potential benefits of thyroid hormone supplementation as a therapeutic target in ischemic heart disease.
Search Results
Madalena von Hafe, João Sergio Neves, Catarina Vale, Marta Borges-Canha, and Adelino Leite-Moreira
Tsuneo Ogawa and Adolfo J de Bold
The concept of the heart as an endocrine organ arises from the observation that the atrial cardiomyocytes in the mammalian heart display a phenotype that is partly that of endocrine cells. Investigations carried out between 1971 and 1983 characterised, by virtue of its natriuretic properties, a polypeptide referred to atrial natriuretic factor (ANF). Another polypeptide isolated from brain in 1988, brain natriuretic peptide (BNP), was subsequently characterised as a second hormone produced by the mammalian heart atria. These peptides were associated with the maintenance of extracellular fluid volume and blood pressure. Later work demonstrated a plethora of other properties for ANF and BNP, now designated cardiac natriuretic peptides (cNPs). In addition to the cNPs, other polypeptide hormones are expressed in the heart that likely act upon the myocardium in a paracrine or autocrine fashion. These include the C-type natriuretic peptide, adrenomedullin, proadrenomedullin N-terminal peptide and endothelin-1. Expression and secretion of ANF and BNP are increased in various cardiovascular pathologies and their levels in blood are used in the diagnosis and prognosis of cardiovascular disease. In addition, therapeutic uses for these peptides or related substances have been found. In all, the discovery of the endocrine heart provided a shift from the classical functional paradigm of the heart that regarded this organ solely as a blood pump to one that regards this organ as self-regulating its workload humorally and that also influences the function of several other organs that control cardiovascular function.
Hugo R Ramos, Andreas L Birkenfeld, and Adolfo J de Bold
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
Thera P Links, Trynke van der Boom, Wouter T Zandee, and Joop D Lefrandt
Thyroid hormone stimulates cardiac inotropy and chronotropy via direct genomic and non-genomic mechanisms. Hyperthyroidism magnifies these effects, resulting in an increase in heart rate, ejection fraction and blood volume. Hyperthyroidism also affects thrombogenesis and this may be linked to a probable tendency toward thrombosis in patients with hyperthyroidism. Patients with hyperthyroidism are therefore at higher risk for atrial fibrillation, heart failure and cardiovascular mortality. Similarly, TSH suppressive therapy for differentiated thyroid cancer is associated with increased cardiovascular risk. In this review, we present the latest insights on the cardiac effects of thyroid suppression therapy for the treatment of thyroid cancer. Finally, we will show new clinical data on how to implement this knowledge into the clinical practice of preventive medicine.
Peter Wolf, Yvonne Winhofer, Martin Krššák, and Michael Krebs
Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
Alexander V Amram, Stephen Cutie, and Guo N Huang
Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.
Lasse Oinonen, Antti Tikkakoski, Jenni Koskela, Arttu Eräranta, Mika Kähönen, Onni Niemelä, Jukka Mustonen, and Ilkka Pörsti
Parathyroid hormone has been related with the risk of hypertension, but the matter remains controversial. We examined the association of parathyroid hormone with central blood pressure and its determinants in 622 normotensive or never-treated hypertensive subjects aged 19–72 years without diabetes, cardiovascular or renal disease, or cardiovascular medications. The methods were whole-body impedance cardiography and analyses of pulse wave and heart rate variability. Cardiovascular function was examined in sex-specific tertiles of plasma parathyroid hormone (mean concentrations 3.0, 4.3 and 6.5 pmol/L, respectively) during head-up tilt. Explanatory factors for haemodynamics were further investigated using linear regression analyses. Mean age was 45.0 (s.d. 11.7) years, BMI 26.8 (4.4) kg/m2, seated office blood pressure 141/90 (21/12) mmHg, and 309 subjects (49.7%) were male. Only five participants had elevated plasma parathyroid hormone and calcium concentrations. Highest tertile of parathyroid hormone presented with higher supine and upright aortic diastolic blood pressure (P < 0.01) and augmentation index (P < 0.01), and higher upright systemic vascular resistance (P < 0.05) than the lowest tertile. The tertiles did not present with differences in pulse wave velocity, cardiac output, or measures of heart rate variability. In linear regression analyses, parathyroid hormone was an independent explanatory factor for aortic systolic (P = 0.005) and diastolic (P = 0.002) blood pressure, augmentation index (P = 0.002), and systemic vascular resistance (P = 0.031). To conclude, parathyroid hormone was directly related to central blood pressure, wave reflection, and systemic vascular resistance in subjects without cardiovascular comorbidities and medications. Thus, parathyroid hormone may play a role in the pathophysiology of primary hypertension.
Frans H H Leenen, Mordecai P Blaustein, and John M Hamlyn
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Signe Frøssing, Malin Nylander, Caroline Kistorp, Sven O Skouby, and Jens Faber
Context
Women with polycystic ovary syndrome (PCOS) have an increased risk of cardiovascular disease (CVD), and biomarkers can be used to detect early subclinical CVD. Midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial natriuretic peptide (MR-proANP) and copeptin are all associated with CVD and part of the delicate system controlling fluid and hemodynamic homeostasis through vascular tonus and diuresis. The GLP-1 receptor agonist liraglutide, developed for treatment of type 2 diabetes (T2D), improves cardiovascular outcomes in patients with T2D including a decrease in particular MR-proANP.
Objective
To investigate if treatment with liraglutide in women with PCOS reduces levels of the cardiovascular biomarkers MR-proADM, MR-proANP and copeptin.
Methods
Seventy-two overweight women with PCOS were treated with 1.8 mg/day liraglutide or placebo for 26 weeks in a placebo-controlled RCT. Biomarkers, anthropometrics, insulin resistance, body composition (DXA) and visceral fat (MRI) were examined.
Results
Baseline median (IQR) levels were as follows: MR-proADM 0.52 (0.45–0.56) nmol/L, MR-proANP 44.8 (34.6–56.7) pmol/L and copeptin 4.95 (3.50–6.50) pmol/L. Mean percentage differences (95% CI) between liraglutide and placebo group after treatment were as follows: MR-proADM −6% (−11 to 2, P = 0.058), MR-proANP −25% (−37 to −11, P = 0.001) and copeptin +4% (−13 to 25, P = 0.64). Reduction in MR-proANP concentration correlated with both increased heart rate and diastolic blood pressure in the liraglutide group. Multiple regression analyses with adjustment for BMI, free testosterone, insulin resistance, visceral fat, heart rate and eGFR showed reductions in MR-proANP to be independently correlated with an increase in the heart rate.
Conclusion
In an RCT, liraglutide treatment in women with PCOS reduced levels of the cardiovascular risk biomarkers MR-proANP with 25% and MR-proADM with 6% (borderline significance) compared with placebo. The decrease in MR-proANP was independently associated with an increase in the heart rate.
Akinori Sairaku, Yukiko Nakano, Yuko Uchimura, Takehito Tokuyama, Hiroshi Kawazoe, Yoshikazu Watanabe, Hiroya Matsumura, and Yasuki Kihara
Background
The impact of subclinical hypothyroidism on the cardiovascular risk is still debated. We aimed to measure the relationship between subclinical hypothyroidism and the left atrial (LA) pressure.
Methods
The LA pressures and thyroid function were measured in consecutive patients undergoing atrial fibrillation (AF) ablation, who did not have any known heart failure, structural heart disease, or overt thyroid disease.
Results
Subclinical hypothyroidism (4.5≤ thyroid-stimulating hormone <19.9 mIU/L) was present in 61 (13.0%) of the 471 patients included. More subclinical hypothyroidism patients than euthyroid patients (55.7% vs 40.2%; P=0.04).’euthyroid patients had persistent or long-standing persistent AF (55.7% vs 40.2%; P = 0.04). The mean LA pressure (10.9 ± 4.7 vs 9.1 ± 4.3 mmHg; P = 0.002) and LA V-wave pressure (17.4 ± 6.5 vs 14.3 ± 5.9 mmHg; P < 0.001) were, respectively, higher in the patients with subclinical hypothyroidism than in the euthyroid patients. After an adjustment for potential confounders, the LA pressures remained significantly higher in the subclinical hypothyroidism patients. A multiple logistic regression model showed that subclinical hypothyroidism was independently associated with a mean LA pressure of >18 mmHg (odds ratio 3.94, 95% CI 1.28 11.2; P = 0.02).
Conclusions
Subclinical hypothyroidism may increase the LA pressure in AF patients.