Search Results

You are looking at 61 - 70 of 150 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Ghrelin x
  • Abstract: Stroke x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: cardiac* x
  • Abstract: Myocardial x
  • Abstract: Cardio* x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Line K Johnson, Kirsten B Holven, Njord Nordstrand, Jan R Mellembakken, Tom Tanbo, and Jøran Hjelmesæth

We aimed to examine whether a whole-grain crispbread (CB) low-fructose, low-calorie diet (LCD) might be superior to a traditional LCD based on fructose-rich liquid meal replacements (LMRs) with respect to improvement of various cardiometabolic risk factors and reproductive hormones. Parallel-group randomised controlled clinical trial. Morbidly obese women with polycystic ovarian syndrome (PCOS) were randomised to either an 8-week CB-LCD or LMR-LCD (900–1100 kcal/day, fructose 17 g/day or 85 g/day). A total of 51 women completed the study. Body weight, fat mass and waist circumference reduced by mean (s.d.) 10.0 (4.8) kg, 7.4 (4.2) kg and 8.5 (4.4) cm, with no significant differences between groups. Total-cholesterol, HDL-cholesterol and Apo-A1 were significantly reduced within both groups (all P values <0.01), with no significant between-group differences. The triacylglycerol and LDL-cholesterol levels were reduced within the LMR group only, with no significant between-group differences. Blood pressure and most measures of glucose metabolism improved significantly in both diet groups, with no significant between-group difference. Uric acid levels rose by 17.7 (46.4) and 30.6 (71.5) μmol/l in the CB and LMR group, respectively, with no significant difference between groups. Gastrointestinal discomfort was significantly and equally reduced in both intervention groups. Free testosterone index was reduced in both groups, with no significant difference between groups. Morbidly obese women with PCOS who underwent either an 8-week low or high-fructose LCD-diet had similar changes in various cardiometabolic risk factors and reproductive hormones. Registration at ClinicalTrials.gov: NCT00779571.

Open access

Kaisu Luiro, Kristiina Aittomäki, Pekka Jousilahti, and Juha S Tapanainen

Objective

To study the use of hormone therapy (HT), morbidity and reproductive outcomes of women with primary ovarian insufficiency (POI) due to FSH-resistant ovaries (FSHRO).

Design

A prospective follow-up study in a university-based tertiary clinic setting.

Methods

Twenty-six women with an inactivating A189V FSH receptor mutation were investigated by means of a health questionnaire and clinical examination. Twenty-two returned the health questionnaire and 14 were clinically examined. Main outcome measures in the health questionnaire were reported as HT, morbidity, medication and infertility treatment outcomes. In the clinical study, risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS) were compared to age-matched controls from a national population survey (FINRISK). Average number of controls was 326 per FSHRO subject (range 178–430). Bone mineral density and whole-body composition were analyzed with DXA. Psychological and sexual well-being was assessed with Beck Depression Inventory (BDI21), Generalized Anxiety Disorder 7 (GAD-7) and Female Sexual Function Index (FSFI) questionnaires.

Results

HT was initiated late (median 18 years of age) compared with normal puberty and the median time of use was shorter (20–22 years) than the normal fertile period. Osteopenia was detected in 9/14 of the FSHRO women despite HT. No major risk factors for CVD or diabetes were found.

Conclusions

HT of 20 years seems to be associated with a similar cardiovascular and metabolic risk factor profile as in the population control group. However, optimal bone health may require an early-onset and longer period of HT, which would better correspond to the natural fertile period.

Open access

Dorte Glintborg, Katrine Hass Rubin, Mads Nybo, Bo Abrahamsen, and Marianne Andersen

Aim

To investigate risk of thyroid disease in Danish women with PCOS.

Design

National register-based study on women with PCOS in Denmark. 18,476 women had a diagnosis of PCOS in the Danish National Patient Register. PCOS Odense University Hospital (PCOS OUH, n = 1146) was an embedded cohort of women with PCOS and clinical and biochemical examination. Three age-matched controls were included for each woman with PCOS (n = 54,757). The main outcome measures were thyroid disease (hypothyroidism, Graves’ disease, goiter, thyroiditis) according to hospital diagnosis codes and/or inferred from filled medicine prescriptions. Associations between baseline TSH and development of cardio-metabolic disease was examined in PCOS OUH.

Results

The median (quartiles) age at inclusion was 29 (23–35) years and follow-up duration was 11.1 (6.9–16.0) years. The hazard ratio (95% CI) for thyroid disease development was 2.5 (2.3–2.7) (P < 0.001). The event rate of thyroid disease was 6.0 per 1000 patient-years in PCOS Denmark versus 2.4 per 1000 patient-years in controls (P < 0.001). Women in PCOS OUH with TSH ≥2.5 mIU/L (n = 133) had higher BMI (median 29 vs 27 kg/m2), wider waist, higher triglycerides and free testosterone by the time of PCOS diagnosis compared to women in PCOS OUH with TSH <2.5 mIU/L (n = 588). Baseline TSH did not predict later development of cardio-metabolic diseases in PCOS OUH.

Conclusions

The event rate of thyroid disease was significantly and substantially higher in women with PCOS compared to controls.

Open access

Siphiwe N Dlamini, Zané Lombard, Lisa K Micklesfield, Nigel Crowther, Shane A Norris, Tracy Snyman, Andrew A Crawford, Brian R Walker, and Julia H Goedecke

Circulating glucocorticoids are associated with metabolic syndrome and related cardiometabolic risk factors in non-Africans. This study investigated these associations in Africans, whose metabolic phenotype reportedly differs from Europeans. Adiposity, blood pressure, glycaemia, insulin resistance, and lipid profile, were measured in 316 African men and 788 African women living in Soweto, Johannesburg. The 2009 harmonized criteria were used to define metabolic syndrome. Serum glucocorticoids were measured using liquid chromatography-mass spectrometry. Cortisol was associated with greater odds presenting with metabolic syndrome (odds ratio (95% CI) =1.50 (1.04, 2.17) and higher systolic (beta coefficient, β (95% CI) =0.04 (0.01, 0.08)) and diastolic (0.05 (0.02, 0.09)) blood pressure, but higher HDL (0.10 (0.02, 0.19)) and lower LDL (−0.14 (−0.24, −0.03)) cholesterol concentrations, in the combined sample of men and women. In contrast, corticosterone was only associated with higher insulin sensitivity (Matsuda index; 0.22 (0.03, 0.41)), but this was not independent of BMI. Sex-specific associations were observed, such that both cortisol and corticosterone were associated with higher fasting glucose (standardized β (95% CI): 0.24 (0.12, 0.36) for cortisol and 0.12 (0.01, 0.23) for corticosterone) and HbA1c (0.13 (0.01, 0.25) for cortisol and 0.12 (0.01, 0.24) for corticosterone) in men only, but lower HbA1c (0.10 (−0.20, −0.01) for cortisol and −0.09 (−0.18, −0.03) for corticosterone) in women only. Our study reports for the first time that associations between circulating glucocorticoid concentrations and key cardiometabolic risk factors exhibit both glucocorticoid- and sex-specificity in Africans.

Open access

M von Wolff, C T Nakas, M Tobler, T M Merz, M P Hilty, J D Veldhuis, A R Huber, and J Pichler Hefti

Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus–pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.

Open access

Chunliang Yang, Junyi Li, Fei Sun, Haifeng Zhou, Jia Yang, and Chao Yang

Hyperglycemia is the consequence of blood glucose dysregulation and a driving force of diabetic complications including retinopathy, nephropathy and cardiovascular diseases. The serum and glucocorticoid inducible kinase-1 (SGK1) has been suggested in the modulation of various pathophysiological activities. However, the role of SGK1 in blood glucose homeostasis remains less appreciated. In this review, we intend to summarize the function of SGK1 in glucose level regulation and to examine the evidence supporting the therapeutic potential of SGK1 inhibitors in hyperglycemia. Ample evidence points to the controversial roles of SGK1 in pancreatic insulin secretion and peripheral insulin sensitivity, which reflects the complex interplay between SGK1 activation and blood glucose fluctuation. Furthermore, SGK1 is engaged in glucose absorption and excretion in intestine and kidney and participates in the progression of hyperglycemia-induced secondary organ damage. As a net effect, blockage of SGK1 activation via either pharmacological inhibition or genetic manipulation seems to be helpful in glucose control at varying diabetic stages.

Open access

Sarah Byberg, Jesper Futtrup, Mikkel Andreassen, and Jesper Krogh

Objectives

Recent large cohort studies suggest an association between high plasma prolactin and cardiovascular mortality. The objective of this systematic review was to systematically assess the effect of reducing prolactin with dopamine agonist on established cardiovascular risk factors in patients with prolactinomas.

Design

Bibliographical search was done until February 2019 searching the following databases: PubMed, EMBASE, WHO and LILAC. Eligible studies had to include participants with verified prolactinomas where metabolic variables were assessed before and after at least 2 weeks treatment with dopamine agonists.

Methods

Baseline data and outcomes were independently collected by two investigators. The study was registered with PROSPERO (registration number CRD42016046525).

Results

Fourteen observational studies enrolling 387 participants were included. The pooled standardized mean difference of the primary outcome revealed a reduction of BMI and weight of −0.21 (95% CI −0.37 to −0.05; P = 0.01; I 2 = 71%), after treatment. Subgroup analysis suggested that the reduction of weight was primarily driven by studies with high prolactin levels at baseline (P = 0.04). Secondary outcomes suggested a small decrease in waist circumference, a small-to-moderate decrease in triglycerides, fasting glucose levels, HOMA-IR, HbA1c and hsCRP, and a moderate decrease in LDL, total cholesterol and insulin.

Conclusion

This systematic review suggests a reduction of weight as well as an improved lipid profile and glucose tolerance after treatment with dopamine agonist in patients with prolactinomas. These data are based on low-quality evidence.

Open access

Antonia Ertelt, Ann-Kristin Barton, Robert R Schmitz, and Heidrun Gehlen

This review summarizes similarities and differences between the metabolic syndromes in humans and equines, concerning the anatomy, symptoms, and pathophysiological mechanisms. In particular, it discusses the structure and distribution of adipose tissue and its specific metabolic pathways. Furthermore, this article provides insights and focuses on issues concerning laminitis in horses and cardiovascular diseases in humans, as well as their overlap.

Open access

Ananda A Santana-Ribeiro, Giulliani A Moreira-Brasileiro, Manuel H Aguiar-Oliveira, Roberto Salvatori, Vitor O Carvalho, Claudia K Alvim-Pereira, Carlos R Araújo-Daniel, Júlia G Reis-Costa, Alana L Andrade-Guimarães, Alécia A Oliveira-Santos, Edgar R Vieira, and Miburge B Gois-Junior

Objectives

Walking and postural balance are extremely important to obtain food and to work. Both are critical for quality of life and ability to survive. While walking reflects musculoskeletal and cardiopulmonary systems, postural balance depends on body size, muscle tone, visual, vestibular and nervous systems. Since GH and IGF-I act on all these systems, we decided to study those parameters in a cohort of individuals with severe short stature due to untreated isolated GH deficiency (IGHD) caused by a mutation in the GHRH receptor gene. These IGHD subjects, despite reduction in muscle mass, are very active and have normal longevity.

Methods

In a cross-sectional study, we assessed walking (by a 6-min walk test), postural balance (by force platform) and fall risk (by the 'Timed Up and Go' test) in 31 IGHD and 40 matched health controls.

Results

The percentage of the walked distance measured in relation to the predicted one was similar in groups, but higher in IGHD, when corrected by the leg length. Absolute postural balance data showed similar velocity of unipodal support in the two groups, and better values, with open and closed eyes and unipodal support, in IGHD, but these differences became non-significant when corrected for height and lower-limb length. The time in 'Timed Up and Go' test was higher in IGHD cohort, but still below the cut-off value for fall risk.

Conclusion

IGHD subjects exhibit satisfactory walking and postural balance, without increase in fall risk.

Open access

Shenglong Le, Leiting Xu, Moritz Schumann, Na Wu, Timo Törmäkangas, Markku Alén, Sulin Cheng, and Petri Wiklund

Background

The directional influences between serum sex hormone-binding globulin (SHBG), adiposity and insulin resistance during pubertal growth remain unclear. The aim of this study was to investigate bidirectional associations between SHBG and insulin resistance (HOMA-IR) and adiposity from childhood to early adulthood.

Methods

Participants were 396 healthy girls measured at baseline (age 11.2 years) and at 1, 2, 4 and 7.5 years. Serum concentrations of estradiol, testosterone and SHBG were determined by ELISA, glucose and insulin by enzymatic photometry, insulin-like growth factor 1 (IGF-1) by time-resolved fluoroimmunoassays, whole-body fat mass by dual-energy X-ray absorptiometry and HOMA-IR were determined by homeostatic model assessment. The associations were examined using cross-lagged path models.

Results

In a cross-lagged path model, SHBG predicted HOMA-IR before menarche β = −0.320 (95% CI: −0.552 to −0.089), P = 0.007, independent of adiposity and IGF-1. After menarche, no directional effect was found between SHBG and insulin resistance or adiposity.

Conclusions

Our results suggest that in early puberty, decline in SHBG predicts development of insulin resistance, independent of adiposity. However, after menarche, no directional influences between SHBG, adiposity and insulin resistance were found, suggesting that observational associations between SHBG, adiposity and insulin resistance in pubertal children may be subject to confounding. Further research is needed to understand the underlying mechanisms of the associations between SHBG and cardiometabolic risk markers in peripubertal children.