Search Results

You are looking at 51 - 60 of 200 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Adrenaline x
  • Abstract: Aldosterone x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Cushings x
  • Abstract: Glucocorticoids x
  • Abstract: Mineralocorticoids x
  • Abstract: Noradrenaline x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Emmanuelle Motte, Anya Rothenbuhler, Stephan Gaillard, Najiba Lahlou, Cécile Teinturier, Régis Coutant, and Agnès Linglart

To investigate whether low-dose mitotane (up to 2 g/day) could be a temporary therapeutic alternative to transsphenoidal surgery (TSS) in pediatric Cushing’s disease (CD). Twenty-eight patients with CD aged 12.2 years (± 2.2) were referred to our center. We compared nine patients treated with mitotane alone for at least 6 months to 13 patients cured after surgery. Primary outcomes were changes in growth velocity, BMI and pubertal development. The following results were obtained: (1) Mitotane improved growth velocity z-scores (−3.8 (±0.3) vs −0.2 (±0.6)), BMI z-scores (2.1 (±0.5) vs 1.2 (±0.5) s.d.) and pubertal development. After 1 year on mitotane, the mean BMI z-score was not significantly different in both groups of patients. (2) Control of cortisol secretion was delayed and inconsistent with mitotane used as monotherapy. (3) Side effects were similar to those previously reported, reversible and dose dependent: unspecific digestive symptoms, concentration or memory problems, physical exhaustion, adrenal insufficiency and hepatitis. (4) In one patient, progressive growth of a pituitary adenoma was observed over 40 months of mitotane treatment, allowing selective adenomectomy by TSS. In conclusions, low-dose mitotane can restore growth velocity and pubertal development and decrease BMI in children with CD, even without optimal control of cortisol secretion. It may promote pituitary tumor growth thus facilitating second-line TSS. However, given its possibly life-threatening side effects (transient adrenal insufficiency and hepatitis), and in the absence of any reliable follow-up procedures, this therapy may be difficult to manage and should always be initiated and monitored by specialized teams.

Open access

Fernando Aprile-Garcia, María Antunica-Noguerol, Maia Ludmila Budziñski, Ana C Liberman, and Eduardo Arzt

Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis.

Open access

Alexander V Amram, Stephen Cutie, and Guo N Huang

Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.

Open access

Legh Wilkinson, Nicolette J D Verhoog, and Ann Louw

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM–SEDIGRAM concept to reduce the side-effect profile of GCs.

Open access

Karim Gariani and François R Jornayvaz

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.

Open access

Rachel K Rowe, Benjamin M Rumney, Hazel G May, Paska Permana, P David Adelson, S Mitchell Harman, Jonathan Lifshitz, and Theresa C Thomas

As many as 20–55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.

Open access

Sofia S Pereira, Tiago Morais, Madalena M Costa, Mariana P Monteiro, and Duarte Pignatelli

Malignant adrenocortical tumors (ACTs) are rare and highly aggressive; conversely, benign tumors are common and frequently found incidentally (the so-called incidentalomas). Currently, the use of molecular markers in the diagnosis of ACTs is still controversial. The aim of this study was to analyze the molecular profile of different ACTs with the purpose of identifying markers useful for differentiating between these tumors. The ACTs that were studied (n=31) included nonfunctioning adenomas (ACAn)/incidentalomas (n=13), functioning adenomas with Cushing's syndrome (ACAc) (n=7), and carcinomas (n=11); normal adrenal glands (n=12) were used as controls. For each sample, the percentage area stained for the markers StAR, IGF2, IGF1R, p53, MDM2, p21, p27, cyclin D1, Ki-67, β-catenin, and E-cadherin was quantified using a morphometric computerized tool. IGF2, p27, cyclin D1, and Ki-67 were the markers for which the percentage of stained area was significantly higher in carcinoma samples than in adenoma samples. Ki-67 and p27 were the markers that exhibited the highest discriminative power for differential diagnosis between carcinomas and all type of adenomas, while IGF2 and StAR were only found to be useful for differentiating between carcinomas and ACAn and between carcinomas and ACAc respectively. The usefulness of Ki-67 has been recognized before in the differential diagnosis of malignant tumors. The additional use of p27 as an elective marker to distinguish benign ACTs from malignant ACTs should be considered.

Open access

Earn H Gan, Wendy Robson, Peter Murphy, Robert Pickard, Simon Pearce, and Rachel Oldershaw

Background

The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex.

Methods

Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR.

Results

The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers.

Conclusion

Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison’s disease.

Open access

Kush Dev Singh Jarial, Anil Bhansali, Vivek Gupta, Paramjeet Singh, Kanchan K Mukherjee, Akhilesh Sharma, Rakesh K Vashishtha, Suja P Sukumar, Naresh Sachdeva, and Rama Walia

Context

Bilateral inferior petrosal sinus sampling (BIPSS) using hCRH is currently considered the ‘gold standard’ test for the differential diagnosis of ACTH-dependent Cushing’s syndrome (CS). Vasopressin is more potent than CRH to stimulate ACTH secretion as shown in animal studies; however, no comparative data of its use are available during BIPSS.

Objective

To study the diagnostic accuracy and comparison of hCRH and lysine vasopressin (LVP) stimulation during BIPSS.

Patients and methods

29 patients (27-Cushing’s disease, 2-ectopic CS; confirmed on histopathology) underwent BIPSS and were included for the study. Patients were randomized to receive hCRH, 5 U LVP or 10 U LVP during BIPSS for ACTH stimulation. BIPSS and contrast-enhanced magnetic resonance imaging (CEMRI) were compared with intra-operative findings of trans-sphenoidal surgery (TSS) for localization and lateralization of the ACTH source.

Results

BIPSS correctly localized the source of ACTH excess in 29/29 of the patients with accuracy of 26/26 patients, using any of the agent, whereas sensitivity and PPV for lateralization with hCRH, 5 U LVP and 10 U LVP was seen in 10/10, 6/10; 10/10,8/10 and 7/7,6/7 patients respectively. Concordance of BIPSS with TSS was seen in 20/27, CEMRI with BIPSS in 16/24 and CEMRI with TSS in 18/24 of patients for lateralizing the adenoma. Most of the side effects were transient and were comparable in all the three groups.

Conclusion

BIPSS using either hCRH or LVP (5 U or 10 U) confirmed the source of ACTH excess in all the patients, while 10 U LVP correctly lateralized the pituitary adenoma in three fourth of the patients.

Open access

Karim Gariani, Pedro Marques-Vidal, Gérard Waeber, Peter Vollenweider, and François R Jornayvaz

Background

Excessive glucocorticoid secretion has been associated with type 2 diabetes mellitus (T2DM) and other features of the metabolic syndrome. We aimed to evaluate whether basal or evening salivary cortisol may predict the occurrence of incident insulin resistance (IR) or T2DM.

Method

This was a prospective, population-based study derived from the CoLaus/PsyCoLaus study including 1525 participants (aged 57.7 ± 10.3 years; 725 women). A total of 1149 individuals were free from T2DM at baseline. Fasting plasma glucose and insulin were measured after a follow-up of 5.3 years. Basal and evening salivary cortisol were measured at baseline. The association between basal or evening salivary cortisol level and incidence of IR or T2DM were analyzed by logistic regression, and the results were expressed for each independent variable as ORs and 95% CI.

Results

After a median follow-up of 5.3 years, a total of 376 subjects (24.7%) developed IR and 32 subjects (2.1%) developed T2DM. Basal and evening salivary cortisol divided in quartiles were not associated with incidence of IR or T2DM. Multivariable analysis for age, gender, body mass index, physical activity and smoking status showed no association between basal or evening salivary cortisol and incidence of IR or T2DM.

Conclusion

In the CoLaus/PsyCoLaus study of healthy adults, neither basal nor evening salivary cortisol was associated with incident IR or T2DM.