Search Results

You are looking at 51 - 60 of 200 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Aldosterone x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Cortisol x
  • Abstract: Cushings x
  • Abstract: Glucocorticoids x
  • Abstract: Medulla x
  • Abstract: Mineralocorticoids x
  • Abstract: Noradrenaline x
  • Refine by Access: All content x
Clear All Modify Search
Open access

V Guarnotta, C Di Stefano, A Santoro, A Ciresi, A Coppola, and C Giordano


Dual-release hydrocortisone (DR-HC) improves metabolism in patients with adrenal insufficiency. The aims of this study were to compare the cardiovascular and metabolic effects of conventional glucocorticoids (GCs) vs. DR-HC and of high vs. low doses of GCs, after 48 months of observation.


We selected 27 patients on hydrocortisone (mean dose 17.5 ± 4.2 mg/day) and 20 patients on cortisone acetate (mean dose 37.5 ± 12.1 mg/day) who maintained this treatment (group A) and 53 patients switched to DR-HC (mean dose 22 ± 4.8 mg/day) (group B). At baseline and after 48 months, clinical and metabolic parameters and Framingham Risk Score (FRS) were obtained.


After 48 months, patients in group A had a significant increase from baseline in BMI (P < 0.001), waist circumference (P = 0.001), systolic blood pressure (P = 0.001), LDL cholesterol (P = 0.018), HbA1c (P = 0.020) and FRS (P = 0.002). By contrast, patients in group B had a significant decrease in BMI (P = 0.002), waist circumference (P = 0.015), diastolic blood pressure (P = 0.031), total (P = 0.006) and LDL cholesterol (P = 0.005), HbA1c (P < 0.001) and FRS (P = 0.015) compared to baseline. No significant differences between high and low doses of both conventional GCs and DR-HC were observed.


DR-HC is associated with an improvement of metabolic parameters and cardiovascular risk compared to conventional GCs, which are associated with a worsening of these parameters, regardless of the dose used.

Open access

Helga Schultz, Svend Aage Engelholm, Eva Harder, Ulrik Pedersen-Bjergaard, and Peter Lommer Kristensen


The risk of developing diabetes mellitus (DM) during treatment with high-dose glucocorticoids is unknown and monitoring of glucose is random in many settings.


To determine incidence of and risk factors for induction of DM during high-dose glucocorticoid therapy of metastatic spinal cord compression (MSCC) in patients referred to radiotherapy. Furthermore, to describe the time course of development of DM.

Subjects and methods

140 patients were recruited (131 were included in the analysis) with MSCC receiving high-dose glucocorticoid ≥100 mg prednisolone per day were included in a prospective, observational cohort study. The primary endpoint was development of DM defined by two or more plasma glucose values ≥11.1 mmol/L. Plasma glucose was monitored on a daily basis for 12 days during radiotherapy.


Fifty-six of the patients (43%; 95% CI 35–52%) were diagnosed with DM based on plasma glucose measurements during the study period. Sixteen patients, 12% (95% CI 6–18%), were treated with insulin. At multivariate analysis, only high baseline HbA1c predicted the development of insulin-treated DM. An HbA1c-value <39 mmol/mol was associated with a negative predictive value of 96% for not developing DM needing treatment with insulin. The diagnosis of diabetes with need for insulin treatment was made within 7 days in 14 of the 16 (88%; 95% CI 72–100%) patients.


The risk of developing DM during treatment with high-dose glucocorticoids in patients with MSCC referred to radiotherapy is high in the first treatment week. Only referral HbA1c predicts the development of DM.

Open access

Jingya Zhou, Meng Zhang, Lin Lu, Xiaopeng Guo, Lu Gao, Weigang Yan, Haiyu Pang, Yi Wang, and Bing Xing


To investigate the validity of discharge ICD-10 codes in detecting the etiology of endogenous Cushing’s syndrome (CS) in hospitalized patients.


We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CS etiology-related ICD-10 codes or code combinations by comparing hospital discharge administrative data (DAD) with established diagnoses from medical records.


Coding for patients with adrenocortical adenoma (ACA) and those with bilateral macronodular adrenal hyperplasia (BMAH) demonstrated disappointingly low sensitivity at 78.8% (95% CI: 70.1–85.6%) and 83.9% (95% CI: 65.5–93.9%), respectively. BMAH had the lowest PPV of 74.3% (95% CI: 56.4–86.9%). In confirmed ACA patients, the sensitivity for ACA code combinations was higher in patients initially admitted to the Department of Endocrinology before surgery than that in patients directly admitted to the Department of Urology (90.0 vs 73.1%, P = 0.033). The same phenomenon was observed in the PPV for the BMAH code (100.0 vs 60.9%, P = 0.012). Misinterpreted or confusing situations caused by coders (68.1%) and by the omission or denormalized documentation of symptomatic diagnosis by clinicians (26.1%) accounted for the main source of coding errors.


Hospital DAD is an effective data source for evaluating the etiology of CS but not ACA and BMAH. Improving surgeons’ documentation, especially in the delineation of symptomatic and locative diagnoses in discharge abstracts; department- or disease-specific training for coders and more multidisciplinary collaboration are ways to enhance the applicability of administrative data for CS etiologies.

Open access

Alexander V Amram, Stephen Cutie, and Guo N Huang

Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.

Open access

Fernando Aprile-Garcia, María Antunica-Noguerol, Maia Ludmila Budziñski, Ana C Liberman, and Eduardo Arzt

Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis.

Open access

Legh Wilkinson, Nicolette J D Verhoog, and Ann Louw

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM–SEDIGRAM concept to reduce the side-effect profile of GCs.

Open access

Gavin P Vinson and Caroline H Brennan

Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion.

Open access

Karim Gariani and François R Jornayvaz

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.

Open access

Rachel K Rowe, Benjamin M Rumney, Hazel G May, Paska Permana, P David Adelson, S Mitchell Harman, Jonathan Lifshitz, and Theresa C Thomas

As many as 20–55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.

Open access

Ferdinand Roelfsema, Peter Y Liu, Rebecca Yang, Paul Takahashi, and Johannes D Veldhuis


Interleukin-2 (IL-2), one of the proinflammatory cytokines, is used in the treatment of certain malignancies. In some studies, transient increases in cortisol and ACTH secretion occurred. Thus, this agent may be used as an experimental probe of adrenal cortisol secretion.


This study quantifies the effects of low and moderate doses of IL-2 on cortisol secretion and assesses the modulation by age, dose and body composition.


Mayo Clinical Translational Research Unit.


Study comprised 35 healthy men, 17 young and 18 older.


Randomized prospective double-blind saline-controlled study of IL-2 administration in two doses with concurrent 10-min blood sampling for 24 h.

Outcome measures:

Deconvolution analysis and approximate entropy of cortisol secretion.


Low-dose IL-2 administration increased nocturnal pulsatile cortisol secretion from 1460 ± 160 to 2120 ± 220 nmol/L/8 h in young subjects and from 1680 ± 105 to 1960 ± 125 nmol/L/8 h (treatment P < 0.0001, but more in young than older, P = 0.02). Comparable results were obtained for total cortisol secretion (P treatment <0.0001, age effect P = 0.005). The higher IL-2 dose caused a large increase in young (P < 0.0001), but not in older (P = 0.90) subjects. This dose also increased approximate entropy from 0.877 ± 0.041 to 1.024 ± 0.049 (P = 0.008), pointing to reduced secretory orderliness. Incremental cortisol (nocturnal) secretion correlated negatively with visceral fat mass (R = −0.41, P = 0.019).


In healthy men, IL-2 injection drives pulsatile cortisol secretion in a dose-dependent way in young, but not older, individuals and erodes cortisol secretory orderliness at a higher dose in young subjects. Cortisol responses are diminished with increasing abdominal visceral fat mass.