Search Results

You are looking at 31 - 40 of 225 items for

  • Abstract: ANS x
  • Abstract: Cushings x
  • Abstract: FSH x
  • Abstract: Growthhormone x
  • Abstract: HPA x
  • Abstract: Hyperpituitary x
  • Abstract: Hypopituitary x
  • Abstract: Hypothalamus x
  • Abstract: LH x
  • Abstract: Nervous x
  • Abstract: Neuro* x
  • Abstract: Oxytocin x
  • Abstract: Prolactin x
  • Abstract: TSH x
  • Abstract: Vasopressin x
  • Refine by Access: All content x
Clear All Modify Search
Open access

David P Sonne, Asger Lund, Jens Faber, Jens J Holst, Tina Vilsbøll, and Filip K Knop

Bile acids are possible candidate agents in newly identified pathways through which energy expenditure may be regulated. Preclinical studies suggest that bile acids activate the enzyme type 2 iodothyronine deiodinase, which deiodinates thyroxine (T4) to the biologically active triiodothyronine (T3). We aimed to evaluate the influence of bile acid exposure and incretin hormones on thyroid function parameters in patients with type 2 diabetes. Thyroid-stimulating hormone (TSH) and thyroid hormones (total T3 and free T4) were measured in plasma from two human studies: i) 75 g-oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals with increasing fat content with concomitant ultrasonographic evaluation of gallbladder emptying in 15 patients with type 2 diabetes and 15 healthy age, gender and BMI-matched controls (meal-study) and ii) 50 g-OGTT and isoglycaemic intravenous glucose infusions (IIGI) alone or in combination with glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and/or GLP2, in ten patients with type 2 diabetes (IIGI-study). In both studies, TSH levels declined (P<0.01) similarly following all meal and infusion stimuli. T3 and T4 concentrations did not change in response to any of the applied stimuli. TSH levels declined independently of the degree of gallbladder emptying (meal-study), route of nutrient administration and infusion of gut hormones. In conclusion, intestinal bile flow and i.v. infusions of the gut hormones, GIP, GLP1 and/or GLP2, do not seem to affect thyroid function parameters. Thus, the presence of a ‘gut–thyroid–pituitary’ axis seems questionable.

Open access

Nikolina Zdraveska, Maja Zdravkovska, Violeta Anastasovska, Elena Sukarova-Angelovska, and Mirjana Kocova

Background

Diagnostic re-evaluation is important for all patients with congenital hypothyroidism (CH) for determining the etiology and identifying transient CH cases. Our study is a first thyroxine therapy withdrawal study conducted in Macedonian CH patients for a diagnostic re-evaluation. We aimed to evaluate the etiology of CH, the prevalence of transient CH and identify predictive factors for distinguishing between permanent (PCH) and transient CH (TCH).

Materials and methods

Patients with CH aged >3 years underwent a trial of treatment withdrawal for 4 weeks period. Thyroid function testing (TFT), ultrasound and Technetium-99m pertechnetate thyroid scan were performed thereafter. TCH was defined when TFT remained within normal limits for at least 6-month follow-up. PCH was diagnosed when TFT was abnormal and classified according the imaging findings.

Results

42 (55%) patients had PCH and 34 (45.0%) patients had TCH. Thyroid agenesia was the most prevalent form in the PCH group. Patients with TCH had lower initial thyroid-stimulating hormone (TSH) values (P < 0.0001); higher serum thyroxine levels (P = 0.0023) and lower mean doses of levothyroxine during treatment period (P < 0.0001) than patients with PCH. Initial TSH level <30.5 IU/mL and levothyroxine dose at 3 years of age <2.6 mg/kg/day were a significant predictive factors for TCH; sensitivity 92% and 100%, specificity 75.6% and 76%, respectively.

Conclusion

TCH presents a significant portion of patients with CH. Initial TSH value and levothyroxine dose during treatment period has a predictive role in differentiating TCH from PCH. Earlier re-evaluation, between 2 and 3 years age might be considered in some patients requiring low doses of levothyroxine.

Open access

L E Zijlstra, D M van Velzen, S Simsek, S P Mooijaart, M van Buren, D J Stott, I Ford, J W Jukema, and S Trompet

Objective

Thyroid hormones have been implicated to play a role in cardiovascular disease, along with studies linking thyroid hormone to kidney function. The aim of this study is to investigate whether kidney function modifies the association of subclinical thyroid dysfunction and the risk of cardiovascular outcomes.

Methods

In total, 5804 patients were included in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). For the current analysis, 426 were excluded because of overt thyroid disease at baseline or 6 months, 266 because of inconsistent thyroid function at baseline and 6 months, 294 because of medication use that could influence thyroid function, and 16 because of missing kidney or thyroid values. Participants with normal fT4 were classified, based on TSH both at inclusion and 6 months, into three groups: subclinical hypothyroidism (TSH >4.5 mIU/L); euthyroidism (TSH = 0.45–4.5 mIU/L); and subclinical hyperthyroidism (TSH <0.45 mIU/L). Strata of kidney function were made based on estimated glomerular filtration rate into three clinically relevant groups: <45, 45–60, and >60 mL/min/1.73 m2. The primary endpoint consists of death from coronary heart disease, non-fatal myocardial infarction and (non)fatal stroke.

Results

Mean age was 75.3 years, and 49.0% patients were male. Mean follow-up was 3.2 years. Of all participants, 109 subjects (2.2%) had subclinical hypothyroidism, 4573 (94.0%) had euthyroidism, and 182 (3.7%) subclinical hyperthyroidism. For patients with subclinical hypothyroidism, euthyroidism, and subclinical hyperthyroidism, primary outcome occurred in 9 (8.3%), 712 (15.6%), and 23 (12.6%) patients, respectively. No statistically significant relationship was found between subclinical thyroid dysfunction and primary endpoint with adjusted hazard ratios of 0.51 (0.24–1.07) comparing subclinical hyperthyroidism and 0.90 (0.58–1.39) comparing subclinical hypothyroidism with euthyroidism. Neither was this relationship present in any of the strata of kidney function, nor did kidney function interact with subclinical thyroid dysfunction in the association with primary endpoint (P interaction = 0.602 for subclinical hyperthyroidism and 0.388 for subclinical hypothyroidism).

Conclusions

In this secondary analysis from PROSPER, we found no evidence that the potential association between thyroid hormones and cardiovascular disease is modified by kidney function in older patients with subclinical thyroid dysfunction.

Open access

Chun-feng Lu, Wang-shu Liu, Xiao-qin Ge, Feng Xu, Jian-bin Su, Xue-qin Wang, and Yan Wang

Background

Adenosine deaminase (ADA) is essential for the differentiation and maturation of lymphocytes, while lymphocytes infiltration in thyroid tissue is a vital pathological feature of Graves’ disease (GD). The aim of the present study was to compare the concentration of ADA between healthy controls (HC) and patients with GD, and evaluate the association between ADA and GD.

Methods

A total of 112 GD patients and 77 matched HC were enrolled in this study. Each participant was examined for thyroid hormones and autoantibodies, ADA concentration, and thyroid ultrasonography.

Results

Serum ADA levels in GD patients were significantly higher than that in HC subgroup (P < 0.001). In GD patients, serum ADA levels were positively associated with serum-free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone receptor antibody (TRAb) levels, and total thyroid gland volume (thyroid VolT) and negatively associated with serum thyroid-stimulating hormone receptor (TSH) levels (all P < 0.05). There were no similar correlations in the HC subgroup. Multiple linear regression analysis suggested that serum TSH, FT3, and ADA levels played an important role in serum TRAb levels.

Conclusions

Our results demonstrated that serum ADA levels were closely associated with GD.

Open access

Thera P Links, Trynke van der Boom, Wouter T Zandee, and Joop D Lefrandt

Thyroid hormone stimulates cardiac inotropy and chronotropy via direct genomic and non-genomic mechanisms. Hyperthyroidism magnifies these effects, resulting in an increase in heart rate, ejection fraction and blood volume. Hyperthyroidism also affects thrombogenesis and this may be linked to a probable tendency toward thrombosis in patients with hyperthyroidism. Patients with hyperthyroidism are therefore at higher risk for atrial fibrillation, heart failure and cardiovascular mortality. Similarly, TSH suppressive therapy for differentiated thyroid cancer is associated with increased cardiovascular risk. In this review, we present the latest insights on the cardiac effects of thyroid suppression therapy for the treatment of thyroid cancer. Finally, we will show new clinical data on how to implement this knowledge into the clinical practice of preventive medicine.

Open access

Jia Liu, Min Liu, Zhe Chen, Yumei Jia, and Guang Wang

Objective

Autoimmune thyroiditis (AIT) is the most common autoimmune thyroid disease. Longitudinal relaxation time mapping (T1-mapping) measured by MRI is a new technique for assessing interstitial fibrosis of some organs, such as heart and liver. This study aimed to evaluate the relationship between T1-mapping value and thyroid function and determine the usefulness of T1-mapping in identifying thyroid destruction in AIT patients.

Methods

This case–control study recruited 57 drug-naïve AIT patients and 17 healthy controls. All participants were given thyroid MRI, and T1-mapping values were measured using a modified look-locker inversion-recovery sequence.

Results

AIT patients had significantly higher thyroid T1-mapping values than the healthy controls (1.077 ± 177 vs 778 ± 82.9 ms; P < 0.01). A significant increase in thyroid T1-mapping values was presented along with the increased severity of thyroid dysfunction (P < 0.01). Correlation analyses showed that increased thyroid T1-mapping values were associated with higher TSH and lower FT3 and FT4 levels (TSH: r = 0.75; FT3: r = −0.47; FT4: r = −0.72; all P < 0.01). Receiver-operating characteristic curve analysis revealed a high diagnostic value of T1-mapping values for the degree of thyroid destruction (area under the curve was 0.95, 95% CI: 0.90–0.99, P < 0.01).

Conclusions

AIT patients have higher thyroid T1-mapping values than the healthy controls, and the T1-mapping values increased with the progression of thyroid dysfunction. Thyroid T1-mapping value might be a new index to quantitatively evaluate the degree of thyroid destruction in AIT patients.

Open access

Jeonghoon Ha, Jeongmin Lee, Kwanhoon Jo, Dong-Jun Lim, Moo Il Kang, Bong Yun Cha, and Min-Hee Kim

Objective

To investigate the prevalence of subclinical hypothyroidism (SCH) in Korean adults and identify the risk factors for the occurrence of SCH by sex.

Design and methods

This study used data from the Sixth Korea National Health and Nutrition Examination Survey (KNHANES VI), a cross-sectional, nationally representative survey, which comprises a health interview survey, a health examination survey and a nutrition survey. To examine SCH, the reference range of thyroid-stimulating hormone (TSH) was defined using both the range provided by the test kit manufacturer (SCH-M) and a population-based range (SCH-P). We investigated the prevalence of SCH and its risk factors by sex using both reference ranges.

Results

The prevalence of SCH in Koreans according to SCH-M (0.35–5.5 µIU/mL) was 5.6%, and 3.3% with SCH-P (0.62–6.68 µIU/mL). For men, smoking significantly reduced the incidence of SCH, positive anti-thyroid peroxidase antibody (TPOAb) significantly increased the risk of SCH, and in an adjusted model, the risk of SCH in all quartiles increased as the urine iodine creatinine ratio (UICR) quartile increased. For women, positive TPOAb was confirmed as a risk factor for SCH, as was the highest UICR quartile. Furthermore, the odds ratio for SCH in urban vs rural residence was 1.78.

Conclusions

The prevalence rates of SCH were similar to those reported in the literature and previously known risk factors were confirmed using both TSH reference ranges. The notable findings from this study are that the increased risk of SCH with increased iodine intake was more marked in men than in women and that residential area may be a risk factor for SCH in women.

Open access

L Johnsen, N B Lyckegaard, P Khanal, B Quistorff, K Raun, and M O Nielsen

Objective

We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming.

Design

Twin-pregnant sheep (n = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood).

Methods

Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE).

Results

In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T3, T3:T4 and T3:TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH.

Conclusions: The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk.

Open access

Melinda Kertész, Szilárd Kun, Eszter Sélley, Zsuzsanna Nagy, Tamás Kőszegi, and István Wittmann

Background

Type 2 diabetes is characterized, beyond the insulin resistance, by polyhormonal resistance. Thyroid hormonal resistance has not yet been described in this population of patients. Metformin is used to decrease insulin resistance, and at present, it is assumed to influence the effect of triiodothyronine, as well.

Methods

In this open-label, pilot, hypothesis-generating, follow-up study, 21 patients were included; all of them were euthyroid with drug naïve, newly diagnosed type 2 diabetes. Before and after 4 weeks of metformin therapy, fructosamine, homeostasis model assessment for insulin resistance (HOMA-IR), thyroid hormones, T3/T4 ratio, and TSH, as well as blood pressure and heart rate using ambulatory blood pressure monitor were measured. We also conducted an in vitro study to investigate the possible mechanisms of T3 resistance, assessing T3-induced Akt phosphorylation among normal (5 mM) and high (25 mM) glucose levels with or without metformin treatment in a human embryonal kidney cell line.

Results

Metformin decreased the level of T3 (P < 0.001), the ratio of T3/T4 (P = 0.038), fructosamine (P = 0.008) and HOMA-IR (P = 0.022). All these changes were accompanied by an unchanged TSH, T4, triglyceride, plasma glucose, bodyweight, blood pressure, and heart rate. In our in vitro study, T3-induced Akt phosphorylation decreased in cells grown in 25 mM glucose medium compared to those in 5 mM. Metformin could not reverse this effect.

Conclusion

Metformin seems to improve T3 sensitivity in the cardiovascular system in euthyroid, type 2 diabetic patients, the mechanism of which may be supracellular.

Open access

Peter D Mark, Mikkel Andreassen, Claus L Petersen, Andreas Kjaer, and Jens Faber

Purpose

The aim of this study was to investigate structure and function of the heart in subclinical hyperthyroidism (SH) before and after obtaining euthyroidism by radioactive iodine treatment, using high precision and observer-independent magnetic resonance imaging (MRI) technology.

Methods

Cardiac MRI was performed before and after euthyroidism was obtained by radioactive iodine treatment in 12 otherwise healthy patients (11 women and one man, mean age 59 years, range 44–71 years) with a nodular goiter and SH, and compared with eight healthy controls investigated at baseline. Cardiac data were expressed as an index, as per body surface area, except for heart rate (HR) and ejection fraction.

Results

Post-treatment cardiac MRI was performed in median 139 days after a normalized serum TSH value had been recorded. During treatment, serum TSH increased from (median (range)) 0.01 (0.01–0.09) to 0.88 (0.27–3.99) mU/l. Patients with untreated SH had increased resting HR (P<0.01) as well as cardiac index (cardiac output as per body surface area) (P<0.01) compared with controls. Obtaining euthyroidism resulted in a significant decrease in left ventricular mass index (LVMI) of 2.7 g/m2 (P=0.034), in HR of 8 bpm (P=0.001), and in cardiac index of 0.24 l/min per m2 (P=0.017).

Conclusions

Normalization of thyroid function by radioactive iodine treatment of SH resulted in significant reductions in clinically important heart parameters such as LVMI, HR, and cardiac index. SH should be regarded as a condition in which aggressive treatment should be considered to protect cardiac function.