Anaplastic Thyroid Cancer: Genome-based Search for New Targeted Therapy Options

Daniel Alexander Hescheler¹⁻² *, Milan Janis Michael Hartmann³ *, Burkhard Riemann¹, Maximilian Michel⁴, Christiane Josephine Bruns³, Hakan Alakus³, Costanza Chiapponi³

1) Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
2) European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
3) Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
4) Institute of Zoology, University of Cologne Germany, Cologne, Germany.

*Daniel A. Hescheler and Milan J. M. Hartmann contributed equally

List of authors:
Daniel Alexander Hescheler, d.hescheler@smail.uni-koeln.de, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
Milan Janis Michael Hartmann, milan.hartmann@smail.uni-koeln.de, Kerpener Strasse 62, 50937, Cologne, Germany
Burkhard Riemann, burkhard.riemann@ukmuenster.de, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
Maximilian Michel, mmichel8@uni-koeln.de, University of Cologne Germany, Cologne, Germany.
Christiane Josephine Bruns, christiane.bruns@uk-koeln.de, Kerpener Strasse 62, 50937, Cologne, Germany
Hakan Alakus, hakan.alakus@uk-koeln.de, Kerpener Strasse 62, 50937, Cologne, Germany
Costanza Chiapponi, costanza.chiapponi@uk-koeln.de, Kerpener Strasse 62, 50937, Cologne, Germany

Corresponding author (including reprint inquiries):
PD Dr. med. Hakan Alakus
Department of General Visceral Tumor and Transplant Surgery
University Hospital Cologne
Kerpener Strasse 62, 50937 Cologne, Germany
Tel: 0049-221-478 4829
E-mail: hakan.alakus@uk-koeln.de

Short Title: Targeted Therapy in Anaplastic Thyroid Cancer
Keywords: Targeted molecular therapy · New treatment advances · Human genome project · anaplastic thyroid cancer

Word count: 3126 words
Abstract

Objective
Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify targeted drugs already approved by the FDA for solid cancer in general, which could be effective in ATC.

Design
Database mining.

Methods
FDA-approved drugs for targeted therapy were identified by screening databases of MyCancerGenome and National Cancer Institute. Drugs were linked to target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response.

Results
155 FDA-approved drugs with 136 potentially targetable genes were identified. 17 (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. 15% of patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response.

Conclusions
While ATC carrying *BRAF* mutations can benefit from *BRAF* inhibitors and this effect might be enhanced by a combined strategy including *PIK3CA* inhibitors in some of the patients, alterations in *BRAF* wild-type ATC are not directly targeted by currently FDA approved options.
Introduction

Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with a historical median survival of 5–12 months and a 1 year survival rate of 20–60% (1–3). About 50% of patients have metastatic disease at the time of diagnosis (1) which generally requires a systemic therapy in addition to surgery and/or radiation therapy.

A recent single-institution retrospective study on 479 patients treated at the University of Texas MD Anderson Cancer Center over 20 years (3), revealed that targeted therapy and immunotherapy play an increasing role, resulting in significantly improved 1- and 2-year survival rates (59 and 42% respectively). Median overall survival (OS) for patients treated with targeted therapy, regardless of their grouping, was 15.7 months compared with 7.6 months in patients not having received any targeted therapy (3). In another single-institution retrospective study with 120 Korean ATC patients, tyrosine kinase inhibition (TKI) was also associated with favorable OS in a multivariate analysis (4).

Although to date, half of the patients are still receiving cytotoxic chemotherapy (3), first-line therapy is progressively shifting towards targeted therapy options as precision medicine and the increasing role of molecular testing in clinical routine is evolving (5). The Food and Drug Administration (FDA) approval of the combination \textit{BRAF}/\textit{MEK} inhibitor therapy for the management of \textit{BRAF} V600E-positive ATC in 2018 was a major first step in this direction. Besides \textit{BRAF} (dabrafenib, vemurafenib) and \textit{MEK} inhibitors (trametinib, cobimetinib), TKI like cabozantinib, lenvatinib, sorafenib and pazopanib, the m-TOR-Inhibitor sapanisertib, PPAR-\gamma agonist efatuzafone, the ALK Inhibitor ceritinib, the \textit{VEGF} inhibitor bevacizumab and several combined treatment and immunotherapeutic agents (pembrolizumab, ipilimumab, nivolumab, durvalumab, tremelimumab, spartalizumab, atezolizumab) are currently being tested in clinical trials (Table 1)(2).

However, ATC is an orphan disease, accounting for only 3% of thyroid cancers (1). Given the low number of patients that can consequently be recruited for clinical studies, a thorough \textit{in silico}
screening of possible treatment strategies offers an intriguing approach for planning future targeted therapy trials.

The aim of this study is to explore if any of the 155 drugs which have been approved by the FDA for targeted therapy of other solid cancers may play a role in the treatment of ATC based on such an in silico analysis of genetic alterations in ATC.

Methods

All data was obtained from open access databases and referenced accordingly. The study was conducted in accordance with the provisions of the Declaration of Helsinki and local laws, as previously described(6).

Genetic alterations in anaplastic thyroid cancer: We identified 15 studies that reported genomic data on a total of 809 ATC patients (table 2). The data set of Landa et al.(7) provides the largest available whole exome sequencing (WES) data set and we therefore based our drugability estimates on this study. Systematic tumor genomics data of ATC generated mutation significance as indicated by MutSig and putative copy number alterations as indicated by GISTIC 2.0 were extracted from Landa et al.(7). We included datasets of anaplastic thyroid cancers (n=33) and excluded poorly differentiated thyroid cancers (n=84 pat). Mutation variants and CNVs directly or indirectly affecting genes of potentially targeted therapy options were identified. As the validation study for our work we used the study by Pozdeyev et al.(8), which provides information on targeted sequencing of 196 ATC tumors.

FDA-approved targeted therapy and their biological targets: In order to find new therapeutic options in anaplastic thyroid cancer, we first identified all FDA-approved drugs for any cancer therapy by searching the databases of National Cancer Institute(9) and MyCancerGenome(10), as previously described(6) (database query 09/2021)(Supplementary Table 1(11)). We identified 155 FDA/EMA-approved drugs targeting cancer genetic alterations. These drug lists were linked to 136 genes by
querying databases of the University of Texas MD Anderson Cancer Center (12) and Drugbank(13), which encode the potential sites of binding and action of each drug (Supplementary Table 1 (11)). Special attention was given to specific genetic alterations resulting in either drug sensitivity or drug resistance to targeted therapy. Hereby the expert-crowdsourced, publication-based databases from MyCancerGenome(10), CIViC(14), TARGET(15) and OncoKB(16) (Supplementary Table 2(11)) were mined.

Drug response prediction: Drug response prediction was calculated as previously described(6). Briefly, the genetic datasets of ATC were searched for a) Gain of function, b) copy number variations (CNV)-Amplification, and c) specific genetic alterations.

The data on approved drugs and their targets were integrated with data on genomic alterations from patients annotated with the biologically relevant genetic alterations. The prediction whether a patient might respond to a given drug based on the following criteria:

(i) The gene underlying the FDA-approved drug target shows a copy number increase in the ATC dataset of the TCGA study
(ii) The drug targets a gene whose product shows a gain of function in the TCGA dataset
(iii) The drug shows a literature-based effectiveness on a specific alteration found in the TCGA dataset such as indicated in the FDA guidelines (7).

Gain of function: Gene alterations resulting in gain of function were determined by querying the databases OncoKB(16) and CIViC(14). These databases derive a biological effect score from publications. Gene alterations were defined as “Gain of function” according to the OncoKB-score (gain of function or like gain of function), CIViC score (pathogenetic, likely pathogenetic or positive), as well as mutations affecting Chang’s mutational hotspots(17).

CNV-Amplification: The data from cBioPortal(18) is annotated with a copy number analysis algorithm (GISTIC 2.0,(19)), which indicates the copy number level per gene: “− 2” deep loose, “− 1” shallow
loose, “0” diploid, “1” low-level gain and “2” high-level amplification. The threshold of high-level amplification “2” was chosen, to signify an occurrence of a copy number increase in each tissue sample.

Specific gene alterations: The expert-crowdsourced, publication-based databases (MyCancerGenome, CIVIC, TARGET and OncoKB) list specific genetic alterations affecting targeted therapy, which were checked on the dataset of anaplastic thyroid cancer (Landa et al.(7)).

Special attention was given as well to indirect gene alterations affecting resistance or sensitivity of drug response. Because of partially overlapping data, the algorithm favored gene alterations affecting drug resistance more than drug sensitivity and secondly favored in order of higher level of evidence.

Mutation hotspot analysis: Since mutation hotspots play an important role in thyroid cancer, the mutation datasets were screened to detect mutation hotspots and their frequency. Mutation variants known to be responsive to FDA-approved drugs according to the database DOCM(20) were also searched.

Analysis of genetic coalterations: A Co-Alteration analysis was performed by querying cBioPortal (accessed on 09/2021)(18). All genes which were altered in \(\geq 3 \) (9%) patients were included in this analysis. \(\chi^2 \)-Tests were performed to identify different distributions of genetic alterations between *BRAF*-unaltered and *BRAF*-altered groups.

Currently recruiting studies on ATC: The databases of the ICH GCP network (International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use – Good clinical practice)(21) and clinicaltrials.gov(22) were searched for the following terms to identify trials currently recruiting and including patients with ATC: ‘anaplastic thyroid cancer’, ‘thyroid cancer’ and ‘ATC’.

Results
Genetic alterations in targeted genes: To date there are 155 already FDA-approved targeted drugs which could potentially aid ATC patients. According to the National Cancer Institute(9) and MyCancerGenome(10) databases, these 155 approved drugs target 136 genes of (supplementary table 1(11)).

26 (79%) of 33 ATC patients from Landa et al. (7) had at least one genetic alteration in the target genes: there were 53 genetic alterations in 24 (17.6%) of 136 targetable genes, with 23 putative driver genetic alterations in 4 genes (BRAF, PIK3CA, ALK, SRC – figure 1A). Activating point mutations in the oncogene BRAF were seen in 15 (45.5%) of 33 cases - in all cases occurring as a BRAF V600E mutation. Putative driver PIK3CA mutations were seen in 18 % of cases. A similar prevalence of alterations in BRAF and PIK3CA is reported for the 196 tumors examined by Pozdeyev et al.(8) (41% and 14% respectively, table 2). Genetic alterations in BRAF and PIK3CA were not mutually exclusive (p = 0.13) and occurred in 15% of all and 33% of BRAF mutated cases. Amplifications of ALK and SRC were detected in 3% of cases respectively (figure 1).

Mutational hotspot analysis: The most frequently affected pathway was the RAS pathway, including the BRAF V600 mutational hotspot (45%), followed by the NRAS Q61 (18.2%, 6/33 cases). The PIK3CA pathway was affected by activating mutations in 6 (18%) of 33 cases, including PIK3CA E545 (9.1%, 3/33 cases). PIK3CA E542 (6%, 2/33 cases) and PIK3CA E81K (Figure 1b).

Analysis of genetic co-alterations: In the BRAF-mutated group, TERT alterations were significantly more common than in the wild-type group (93.3% vs 55.6%, p=0.0183). In the wild-type group TP53 (88.9% vs 53.3%, p=0.029), NRAS (33.3% vs 0%, p=0.017) and PTEN (27.8% vs 0%, p=0.036) alterations were significantly more frequent (Figure 1c).

Potential drug options: We predicted the drug response in the ATC tumor samples as previously described(6). The in-silico analysis specifically identified BRAF inhibitors (selective BRAF inhibitors or multikinase i.a. BRAF inhibitors). The PIK3CA-inhibitor copanlisib showed a predicted response in
18% of cases. The 146 remaining drugs showed no or low (under 4% cases) genetically predicted drug response in ATC (figure 2).

Discussion

Several randomized and non-randomized clinical trials have been conducted in ATC during the last years (table 1). While in 2019 the Surveillance, Epidemiology, and End Results (SEER) data base still reported no improvement in OS between 1986 and 2015 (23) there are clear signs of progress. In 2020 a retrospective analysis of 479 patients treated at the MD Anderson Cancer Center over the course of 20 years revealed a significant increase in BRAF screening from 17% between 2000 and 2013 to 97% between 2017 and 2019. Further, the number of patients receiving targeted therapy increased from 9% to 61% and the median OS for patients treated with targeted therapy increased from 7.6 months in patients not having received any targeted therapy to 15.7 months for the same time-frames(3). Targeted therapies administered to patients at MD Anderson included dabrafenib, trametinib, vemurafenib, cobimetinib, larotrectinib, everolimus, pazopanib, bevacizumab, lenvatinib, selpercatinib, lenalidomide, and cetuximab. The median OS increased regardless of the specific therapy scheme (3).

The focus of the present study was to screen targeted cancer drugs approved by the FDA for other solid cancers and to identify those that may play any role in ATC based on its genetic alterations. Since these drugs are already approved, the side-effect profile is known which would lead to a faster approval in another cancer moiety such as ATC. While ATC prognosis is particularly poor, it is also relatively seldom, accounting for only 3% of all thyroid cancer(1). This hinders recruitment for clinical studies, and we consequently tried to build a systematic, *in silico* theoretical framework for future clinical targeted therapy research.

15 studies covering more than 800 ATC samples were identified (table 2). The largest whole exome sequencing dataset (7) was used for discovery of druggability and the largest ATC cohort based on
targeted sequencing (8) was defined for validation. Potentially targetable genes of FDA approved targeted therapy included \textit{BRAF}, \textit{PIK3CA}, \textit{ALK} and \textit{SRC} (figure 1a). It needs to be mentioned that in 13 (39.4\%) of 33 patients, the data set of Landa et al.(7) did not cover the whole gene set of 136 druggable genes. Therefore, some genes could be underrepresented (supplementary table 6).

The \textit{in-silico} analysis identified BRAF inhibitors, in particular the PIK3 inhibitor copanlisib, the VEGFR-2/SRC inhibitor apatinib, and the ALK inhibitors brigatinib, ceritinib, crizotinib and lorlatinib as possible targeted therapy agents for ATC (figure 2)(28). Although \textit{NRAS}-Q61 was the second highest frequency mutation hotspot (figure 1b and c), there are currently no FDA approved drugs targeting this specific mutation. Besides BI1701963 targeting \textit{KRAS} and Tipifarnib targeting \textit{HRAS} (both being tested in ongoing studies), to the best of our knowledge there is currently no drug targeting \textit{NRAS}.

For the treatment of the \textit{BRAF}-mutant ATC, the approval of combined \textit{BRAF} and \textit{MEK} inhibition with dabrafenib and trametinib in 2018 represented a major breakthrough with an objective response rate (ORR) of 69\% and a stable disease (SD) rate of 19\%, although almost all patients experienced adverse events (AE) and 42\% grade ≥ 3 AEs(24). Heterogeneous mechanisms of resistance can modulate the efficacy of \textit{BRAF}-inhibition, including activation of \textit{ERBB3}, \textit{EGFR}, \textit{PI3K}, \textit{IL6}, \textit{HGF/MET}, and the reactivation of the MAPK pathway through an acquired \textit{KRAS} G12D mutation. Inhibition of \textit{ERK}, a strategy for overcoming \textit{BRAF} and \textit{MEK} inhibition resistance in melanoma still needs to be tested in ATC(8).

Due to the coexistence of \textit{BRAF} and \textit{PIK3CA} mutations in 15\% of tumors, future clinical trials might consider synchronous or metachronous combination therapies with PIK3 inhibitors, as described by Gibson et al.(25). The authors performed a multiregional genomic analysis of an exceptional responder to dual inhibition and demonstrated that this exceptional response was due to coexisting alterations in the MAPK and PI3K/AKT pathways. The \textit{PIK3CA} inhibitor Copanlisib has recently proved very successful in recurrent, indolent non-Hodgkin Lymphoma (CHRONOS-3 study(26)) and is currently being tested in trials on radioiodine refractory thyroid cancer in order to improve
radioiodine response (NCT04462471). To our best knowledge, there are no current trials testing copanlisib in combined treatments for ATC (Table 1).

ALK overexpression and mutation have been described in 11-20% of ATC patient samples(27,28). In the TCGA data only amplifications of **ALK** were detected in 3% of ATC cases(7). The use of ceritinib, a well-tolerated, highly potent oral **ALK**-inhibitor, is documented in case reports(29) and is currently being tested in a multicenter, open label trial (NCT02289144, table 1).

There are case reports, describing the pre-(30) and postoperative(31) use of the selective **VEGFR-2/SRC** inhibitor apatinib in single patients, but no clinical studies have thus far been published.

BRAF inhibitors provide a good option in patients displaying this mutation. Small studies have used multikinase inhibitors (MKIs) for **BRAF** V600 wild-type patients. Sorafenib however exhibited a low ORR (10%), short median progression free survival (PFS) (1.9 months) and OS (3.9 months)(32). In phase 2 trials both sunitinib and pazopanib showed no overall response(33,34). In phase 2 trials including 5-17 patients with ATC, there were PRs of 24-60% under Lenvatinib treatment(35,36). Thus, the two first line agents for differentiated thyroid cancer (DTC) Sorafenib and Lenvatinib seem to have a poor response in ATC.

The genetic **RET/ PTC** and **NTRK** rearrangements observed in papillary thyroid cancer have also been described in ATC(37). Selective RET inhibitors such as selpercatinib and pralsetinib have been approved by the FDA for RAI-refractory RET fusion thyroid cancer. Phase I-II trials including previously treated non-medullary TC (n=19) report a high response rate (79%) and a 1-year progression free survival of 64%(38). However only 2 of the 19 non-medullary TC samples were anaplastic. RET mutations occur rather rarely in ATC(39). Instead, TRK fusions have been reported in 25% of ATC(39). For larotrectinib, a highly potent and selective inhibitor of all TRKs approved for the treatment of adult and pediatric patients with NTRK fusions, the reported objective response rate
for ATC pooled from available phase I/II trials was 29% (40). Additionally, larotrectinib was very well tolerated.

In the study of Pozdeyev et al.(8) TERT promoter mutations were common (65%). The reported coexistence with DTC(41,42) suggests that they might contribute to the more aggressive DTC phenotype which is prone to conversion to ATC when an ATC-related ‘second hit’ genetic event occurs(8). Whether telomerase inhibitors like INO5401, Telomelysin and Imeltestat, which are currently being tested on myeloid malignancy, might also play a role for the treatment of ATC in the future is still unclear.

Since TP53 seems to be mutated in 9-73% of ATCs (table 2), p53-activating compounds that are currently being tested on myeloid neoplasms and sarcomas(43) might also offer an option in the future.

The better understanding of the genetic basis of ATC with the identification of BRAF-mutant ATC led to an improvement for the treatment of some ATC patients, however, median survival of 1.3 year is still quite poor and there is still no satisfying treatment for BRAF wild-type patients. Here we present the first systematic analysis of all currently available FDA approved drug options in ATC based on genomic alterations reported from ATC tumor sequencing studies. We restricted this first in silico analysis on already FDA approved studies as the hurdle to progress to further studies would be relatively low with a drug that has already been approved through clinical trials. However, our data show no new or surprising candidate drug. This could be due to the limited dataset of only 33 patients. We restricted our analysis to these 33 patients as these patients could be clearly identified as having ATC as opposed to poorly differentiated thyroid cancer or other types of TC. It would be interesting to repeat this analysis as more tumor samples are sequenced and are deposited on databases. Further, the drug panel could be expanded significantly beyond FDA approved drugs in order to identify drugs that could be tested in ATC cell lines as a screening tool before going into cell lines and then patients. Lastly, our software algorithm considers only direct gene targets rather than
pathways. Therefore, drugs acting indirectly (like the MEK inhibitor selumetinib for NF1 alterations) might not have been considered sufficiently.

Conclusion

Based on the currently available genomic data, targeted therapy options for ATC are limited. PIK3 inhibition might be an option for combined strategies with BRAF inhibitors. Few patients might also benefit from VEGFR-2 or ALK inhibitors. However, even this limited dataset identified significant heterogeneity amongst tumor samples. Targeting treatment for BRAF wild type tumors seems to be very limited and much more challenging.
Declarations

Competing interest statement

Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus, and Costanza Chiapponi declare that they have no conflict of interest.

Funding statement

Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus, and Costanza, Chiapponi received no financial support for the research, authorship, and/or publication of this article.

Author Contribution statement

Daniel Hescheler and Hakan Alakus designed the computational model and framework. Daniel Hescheler, Hakan Alakus and Costanza Chiapponi carried out the implementation. Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus, and Costanza Chiapponi contributed to the interpretation of the results. Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus, and Costanza Chiapponi contributed critical feedback and helped shape the research, analysis, and manuscript. Costanza Chiapponi and Daniel Hescheler wrote the first draft of the manuscript, and all authors critically revised the manuscript. All authors approved the final version of the manuscript. All authors decided to submit this study and agreed to be accountable for all aspects of the work as recommended by the “International Committee of Medical Journal Editors” (ICMJE) authorship criteria.

Data availability

The datasets generated during and/or analyzed during the current study are available in the figshare repository, http://doi.org/10.6084/m9.figshare.14937117.
Code availability

The codes generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References

12. The University of Texas MD Anderson Cancer Center. Personalized cancer therapy [Internet]. (https://pct.mdanderson.org/): on accessed: 2021 Feb 20

Copyright © 2022 the authors
(https://doi.org/10.1038/ng.3774)

(https://doi.org/10.1200/PO.17.00011)

(https://doi.org/10.1158/2159-8290.CD-12-0095)

(https://doi.org/10.1038/nmeth.4000)

21. The ICH GCP Network. Latest Trials - Clinical Trials Registry - ICH GCP [Internet].
22. The U.S National Institute of Health. Home - ClinicalTrials.gov [Internet].
 (https://clinicaltrials.gov/): on accessed: 2021 Sep 18

49. Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, Haddad RI, Kraft S, Cabanillas

Figure 1: This figure shows the results of potential targetable genetic alterations in anaplastic thyroid cancer. A) 17 (52%) of 33 patients had at least one putative activating genetic alteration in the targetable genes. There were 53 genetic alterations in 24 genes, respectively 23 known putative driver genetic alterations in 4 genes (BRAF, PIK3CA, ALK and SRC) as shown in the bar chart. B) In the mutation analysis besides BRAF V600E, other mutation hotspots occurred in NRAS Q61 (18%, 6/33), PIK3CA E545 (9%, 3/33), PIK3CA E542 (6%, 2/33), HRAS G13 (6%, 2/33) and others. C) The figure shows Co-Alterations in comparison BRAF altered group (n=15) to BRAF unaltered group(n=18); created by cBioPortal ((18), accessed 9/2021). BRAF-mutation occurred together with TERT alterations rather than in the BRAF-unaltered group (14/15 vs 10/18pat, p=0.0183) and PIK3CA(5/15 vs 2/18, p=0.13). On the other hand, TP53 alterations occurred more frequently in the BRAF unaltered group (8/15 vs 16/18pat, p=0.029), as well as NRAS, PTEN and others.

Figure 2: Percentages of ATC cases, harboring a targetable genetic alteration, predicting drug responsiveness for FDA approved drugs. BRAF-inhibitors (selective or multikinase BRAF inhibitors) are genetically predicted for drug response in ATC. PIK3CA is a targetable alteration found in 18% of patients, making the PIK3CA inhibitor copanlisib an additional genetically predicted therapy option, followed by 3% for VEGFR2/SRC inhibitor apatinib and the ALK inhibitors.
Table 1 Overview of clinical trials involving ATC adopted and modified from Al-Jundi et al. (44).

<table>
<thead>
<tr>
<th>Drug/ ClinicalTrials.gov ID/Reference</th>
<th>Mechanism of Action</th>
<th>Enrolled Patients *</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>Results</th>
<th>Reported Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Vemurafenib - Hyman et al. (45) | BRAF\(^{V600E}\) | ATC: 7 (multiple BRAFV600E mutant tumors) | ORR | Phase II, basket trial | PR: 14%
CR: 14% | Rash, fatigue, arthralgia |
| **BRAF/MEK Inhibitor Combination** | | | | | | |
| Dabrafenib and Trametinib - Subbiah et al. (24) | Dabrafenib: BRAF\(^{V600E}\)
Trametinib: MEK1, MEK2 | ATC: 16 locally advanced or metastatic BRAF\(^{V600E}\) mutant disease | ORR | Phase II, single arm, open label | PR: 63%
CR: 6% | Skin papilloma hyperkeratosis, alopecia, fatigue, fever, diarrhea, acneiform rash |
| Trametinib and Dabrafenib - NCT04739566 | | B BRAF-positive ATC, neoadjuvant
estimated enrolment: 18 | ORR | Phase II, single arm, open label, recruiting | N/A
estimated end date: 01/26 (clinicaltrials.gov) |
| **Tyrosine Kinase Inhibitors** | | | | | | |
| Axitinib - Cohen et al. (46) | VEGFR, PDGFR, KIT | DTC: 45 (resistant to or not appropriate for RAI)
MTC: 11
ATC 11 | ORR | Phase II, single arm, open label | ORR of 30%
SD for 16 weeks: 38%
PFS: 18.1 months | Fatigue, diarrhea, nausea, anorexia, hypertension, stomatitis |
| Lenvatinib - Tahara et al. (35) | VEGFR, PDGFR, EGFR, RET, KIT | enrolled all types of thyroid cancer, but results reported one cohort for 17 patients with ATC | Serious/non-serious AE | Phase II, single arm, open label | Most frequent AE (Decreased appetite, 82%; HTN, 82%; Fatigue, 59%; Nausea, 59%; Proteinuria, 59%)
Secondary Endpoints:
ORR: 24%
Median PFS: 7.4 months
Median OS | Hypertension, diarrhea, fatigue, anorexia, weight loss, nausea |
<table>
<thead>
<tr>
<th>Drug/ ClinicalTrials.gov ID/Reference</th>
<th>Mechanism of Action</th>
<th>Enrolled Patients</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>Results</th>
<th>Reported Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenvatinib NCT02726503</td>
<td>ATC: 39</td>
<td>OS</td>
<td>Phase II, single arm, open label</td>
<td>N/A</td>
<td>completed 03/20, no results published yet</td>
<td>Fatigue, skin and hair hypopigmentation, diarrhea, nausea</td>
</tr>
<tr>
<td>Pazopanib Bible et al. (34)</td>
<td>VEGFR, FGFR, PDGFR, RET</td>
<td>ATC: 15 (advanced or metastatic disease)</td>
<td>Tumor response rate</td>
<td>Phase II, two arms, open label</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>Selpercatinib NCT04759911</td>
<td>VEGFR, FGFR, RET</td>
<td>Thyroid cancer with RET alterations (including ATC)</td>
<td>ORR</td>
<td>Phase II, single arm, open label, recruiting</td>
<td>N/A</td>
<td>estimated end date: 09/24 (clinicaltrials.gov)</td>
</tr>
<tr>
<td>Sorafenib Capdevila et al. (47)</td>
<td>VEGFR, PDGFR, RET, KIT, FLT</td>
<td>DTC: 16, MTC: 15, ATC: 3 (metastatic progressive unsuitable for surgery, RAI, or radiotherapy)</td>
<td>ORR</td>
<td>Retrospective, Spanish o-label-sorafenib-use program</td>
<td>DTC PR: 19%</td>
<td>Hand-foot skin reaction, diarrhea, alopecia, skin rash or desquamation</td>
</tr>
<tr>
<td>Sunitinib Ravaud et al. (33)</td>
<td>VEGFR, PDGFR, RET, KIT, FLT</td>
<td>DTC: 41 (RAI resistant), MTC: 26, ATC: 4 (sunitinib as a first-line anti-angiogenic therapy)</td>
<td>ORR</td>
<td>Phase II, single arm, open label</td>
<td>DTC PR: 22%, MTC PR: 38.5%, ATC: no response</td>
<td>Cytopenia, diarrhea, fatigue, hand-foot skin reaction, nausea, musculoskeletal pain, hypertension</td>
</tr>
<tr>
<td>Abemaciclib NCT04552769</td>
<td>CDK4, CDK6</td>
<td>Metastatic or Locally Advanced Anaplastic/Undifferentiated Thyroid Cancer</td>
<td>ORR</td>
<td>Phase II, single arm, open label, recruiting</td>
<td>N/A</td>
<td>estimated end date: 09/23 (clinicaltrials.gov)</td>
</tr>
</tbody>
</table>

Serine/Threonine kinases Inhibitors

mTOR Inhibitors

Copyright © 2022 the authors
<table>
<thead>
<tr>
<th>Drug/ ClinicalTrials.gov ID/Reference</th>
<th>Mechanism of Action</th>
<th>Enrolled Patients</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>Results</th>
<th>Reported Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus Lim et al. (48)</td>
<td>Thyroid cancer (all subtypes): 38</td>
<td>Disease control rate (PR + SD > 12 weeks)</td>
<td>Phase II, single arm, open label</td>
<td>PR: 5% (2/38, one PTC patient and one FTC) SD: 76%</td>
<td>DTC: Median PFS 12.9 months, PR 1/38 MTC: Median PFS 13.1 months, PR 1/10 ATC: Median PFS 2.2 months, PR 1/7</td>
<td>Mucositis, anorexia, abnormal liver enzymes, acneiform rash</td>
</tr>
<tr>
<td>Everolimus Hanna et al. (49)</td>
<td>mTOR</td>
<td>DTC: 33 MTC: 10 ATC: 7</td>
<td>PFS</td>
<td>Phase II, single arm, open label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLN0128 NCT02244463</td>
<td>Metastatic ATC estimated Patients: 25</td>
<td>PFS</td>
<td>Phase II, single arm, open label, recruiting</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Combination Therapies Under Investigation

<table>
<thead>
<tr>
<th>Drug/ ClinicalTrials.gov ID/Reference</th>
<th>Mechanism of Action</th>
<th>Enrolled Patients</th>
<th>Primary Outcome</th>
<th>Study Design</th>
<th>Results</th>
<th>Estimated End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezolizumab NCT03181100</td>
<td>Atezolizumab: PD-1L Bevacizumab: VEGFR</td>
<td>ATC and poorly differentiated thyroid cancer estimated enrolment: 50</td>
<td>OS</td>
<td>Phase II, open label, parallel assignment, recruiting</td>
<td>N/A</td>
<td>(clinicaltrials.gov)</td>
</tr>
<tr>
<td>Bevacizumab NCT03181100</td>
<td>Cobimetinib: MEK1, MEK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobimetinib NCT03181100</td>
<td>Vemurafenib: BRAF<sup>V600E</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vemurafenib NCT03181100</td>
<td>Paclitaxel: antimicrotubule agent Nab-Paclitaxel: albumin-stabilized antimicrotubule agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel NCT03181100</td>
<td>Nab-Paclitaxel: albumin-stabilized antimicrotubule agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug/ID/Reference</td>
<td>Mechanism of Action</td>
<td>Enrolled Patients *</td>
<td>Primary Outcome</td>
<td>Study Design</td>
<td>Results</td>
<td>Reported Adverse Events</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>BCA101 and Pembrolizumab NCT04429542</td>
<td>BCA101: EGFR, TGFb Pembrolizumab: PD-1 receptor</td>
<td>N/A</td>
<td>Safety and tolerability of BCA101, MTD</td>
<td>Phase I/Ib, open label, parallel assignment, recruiting</td>
<td>N/A</td>
<td>estimated end date: 06/23</td>
</tr>
<tr>
<td>Cabozantinib and Atezolizumab The CABATEN study NCT04400474</td>
<td>Cabozantinib: VEGF, RET, KIT, FLT-3, TEI-2, TRKB, AXL Atezolizumab: PD-L1</td>
<td>N/A</td>
<td>ORR</td>
<td>Phase II, single arm, open label, recruiting</td>
<td>N/A</td>
<td>estimated end date: 03/24 (clinicaltrials.gov)</td>
</tr>
<tr>
<td>Cemiplimab, Trametinib and Dabrafenib NCT04238624</td>
<td>Cemiplimab: PD-1 receptor Dabrafenib: BRAFmexx Trametinib: MEK1, MEK2</td>
<td>N/A</td>
<td>ORR</td>
<td>Phase II, single arm, open label, recruiting</td>
<td>N/A</td>
<td>estimated end date: 06/22 (clinicaltrials.gov)</td>
</tr>
<tr>
<td>Lenvatinib and Pembrolizumab NCT04171622</td>
<td>Lenvatinib: VEGF, PDGFR, EGFR, RET, KIT Pembrolizumab: PD-1 receptor</td>
<td>N/A</td>
<td>OS</td>
<td>Phase II, single arm, open label, recruiting</td>
<td>N/A</td>
<td>estimated end date: 09/22 (clinicaltrials.gov)</td>
</tr>
<tr>
<td>Pazopanib, Paclitaxel and IMRT NCT01236547</td>
<td>Pazopanib: VEGFR, FGFR, PDGFR, RET, KIT Paclitaxel: antimicrotubule agent IMRT: intensity-modulated radiation therapy</td>
<td>N/A</td>
<td>OS</td>
<td>Phase II, randomized, two arms, double blind, placebo controlled, active – not recruiting</td>
<td>OS Placebo: 29.0 % OS Pazopanib: 37.1 % (clinicaltrials.gov)</td>
<td>N/A</td>
</tr>
<tr>
<td>Drug/ ClinicalTrials.gov ID/Reference</td>
<td>Mechanism of Action</td>
<td>Enrolled Patients *</td>
<td>Primary Outcome</td>
<td>Study Design</td>
<td>Results</td>
<td>Reported Adverse Events</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Pembrolizumab, Trametinib and Dabrafenib NCT04675710</td>
<td>Pembrolizumab: PD-1 receptor</td>
<td>Pembrolizumab: PD-1 inhibitor</td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dabrafenib: BRAF^{V600E}</td>
<td>Dabrafenib: BRAF^{V600E}</td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trametinib: MEK1, MEK2</td>
<td>Trametinib: MEK1, MEK2</td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimated enrolment: 30</td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 The table lists the clinical trials on BRAF/MEK-Inhibitors, kinase inhibitors, mTOR inhibitors and combination therapies in anaplastic thyroid cancer in terms of study design, primary outcomes and reported adverse events. It has been adapted from Al-Jundi et al.(44) and updated with current clinical trials still recruiting. Many trials do not focus on ATC exclusively, but rather include ATC among other thyroid cancer types.
Table 2 Genomic data concerning ATC

<table>
<thead>
<tr>
<th>Study</th>
<th>n of samples</th>
<th>Type of sequencing / Number of Genes</th>
<th>Genes % of total</th>
<th>Gender in % m/f (NA)</th>
<th>Median Age in years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikiforova et al., 2013 (50)</td>
<td>27</td>
<td>TS 12</td>
<td>26% N/A 11%</td>
<td>4% 19% 0%</td>
<td>USA N/A N/A</td>
</tr>
<tr>
<td>Kunstmann et al., 2015 (51)</td>
<td>22</td>
<td>WES</td>
<td>27% N/A 12%</td>
<td>9% 6% 4% USA/Sweden</td>
<td>41/59 73</td>
</tr>
<tr>
<td>Jeon et al., 2016 (52)</td>
<td>11</td>
<td>TS 520</td>
<td>91% N/A 18%</td>
<td>9% N/A N/A Korea</td>
<td>27/73 75</td>
</tr>
<tr>
<td>Landa et al., 2016 (7)</td>
<td>33</td>
<td>TS 341</td>
<td>45% N/A 18% 73%</td>
<td>9% 18% 0% USA</td>
<td>27/24/49 66</td>
</tr>
<tr>
<td>Latteyer et al., 2016 (28)</td>
<td>30</td>
<td>TS 9</td>
<td>6% N/A 60% N/A</td>
<td>3% 13% 7% Germany</td>
<td>55/45 70</td>
</tr>
<tr>
<td>Tiedje et al., 2017 (53)</td>
<td>118</td>
<td>TS 17</td>
<td>11% 12% 55% 73%</td>
<td>8% 8% 4% Germany</td>
<td>48/52 65</td>
</tr>
<tr>
<td>Ibrahimipasic et al., 2017 (54)</td>
<td>57</td>
<td>TS 410</td>
<td>40% 4% 9%</td>
<td>60% 0% 25% 4% USA</td>
<td>44/56 >45</td>
</tr>
<tr>
<td>Bonhomme et al. 2017 (55)</td>
<td>94</td>
<td>TS 50</td>
<td>14% 6% 54% 54%</td>
<td>4% 30% 8% France</td>
<td>40/60 68</td>
</tr>
<tr>
<td>Chen et al., 2018 (56)</td>
<td>12</td>
<td>TS 46/50</td>
<td>25% N/A 25%</td>
<td>11% 17% 11% USA</td>
<td>48/52 55</td>
</tr>
<tr>
<td>Pozdeyev et al., 2018 (8)</td>
<td>196</td>
<td>TS 229</td>
<td>41% 14% 65% 65%</td>
<td>27% USA N/A N/A USA</td>
<td>48/52 64</td>
</tr>
<tr>
<td>Duan et al., 2019 (57)</td>
<td>25</td>
<td>TS 18</td>
<td>56% 44% 60% 63%</td>
<td>12% 16% 0% China</td>
<td>48/52 64</td>
</tr>
<tr>
<td>Yoo et al., 2019 (58)</td>
<td>13</td>
<td>WGS</td>
<td>41% 11% 48% 59%</td>
<td>0% 30% 15% Korea</td>
<td>37/63 61</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>TGS – 31 genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravi et. al., 2019 (59)</td>
<td>11</td>
<td>WES</td>
<td>18% 18%</td>
<td>36% 0% 13% 13% Sweden</td>
<td>N/A 71</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>RNA-Seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu et al., 2020 (60)</td>
<td>107</td>
<td>TS (multiple platforms)</td>
<td>45% 18% 63% 75%</td>
<td>24% USA/Australia</td>
<td>46/54 68</td>
</tr>
<tr>
<td>Lai et al., 2020 (61)</td>
<td>27</td>
<td>TS 7</td>
<td>26% 15% 70% 82%</td>
<td>11% 30% 0% Taiwan</td>
<td>49/51 75</td>
</tr>
</tbody>
</table>

Abbreviations: ATC, anaplastic thyroid cancer; BRAF, v-Raf murine sarcoma viral oncogene homolog B; f, female; HRAS, gene encoding for the H-Ras (Harvey Rat sarcoma virus) protein; KRAS, gene encoding for the K-Ras (Kirsten rat sarcoma virus) protein; n, number; NRAS, neuroblastoma RAS viral oncogene homolog; N/A, not available; m, male; PIK3CA, gene coding for phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; TGS, third generation sequencing; TERT, gene encoding for telomerase reverse transcriptase; tp53, gene encoding for tumor protein p53; TS, target sequencing; WES, whole exome sequencing; WGS, whole genome sequencing;
Table 2 The table lists all genomic data found involving anaplastic thyroid cancer. Shown are the number of samples, the main alternated genes in % of the whole sample group and their nationality, gender distribution in % and median age accordingly.
Figure 1: This figure shows the results of potential targetable genetic alterations in anaplastic thyroid cancer. A) 17 (52%) of 33 patients had at least one putative activating genetic alteration in the targetable genes. There were 53 genetic alterations in 24 genes, respectively 23 known putative driver genetic alterations in 4 genes (BRAF, PIK3CA, ALK and SRC) as shown in the bar chart. B) In the mutation analysis besides BRAF V600E, other mutation hotspots occurred in NRAS Q61 (18%, 6/33), PIK3CA E545 (9%, 3/33), PIK3CA E542 (6%, 2/33), HRAS G13 (6%, 2/33) and others. C) The figure shows Co-Alterations in comparison BRAF altered group (n=15) to BRAF unaltered group(n=18); created by cBioPortal ((18), accessed 9/2021). BRAF-mutation occurred together with TERT-alterations rather than in the BRAF-unaltered group (14/15 vs 10/18pat, p=0.0183) and PIK3CA(5/15 vs 2/18, p=0.13). On the other hand, TP53 alterations occurred more frequently in the BRAF unaltered group (8/15 vs 16/18pat, p=0.029), as well as NRAS, PTEN and others.

319x297mm (192 x 192 DPI)
Figure 2: Percentages of ATC cases, harboring a targetable genetic alteration, predicting drug responsiveness for FDA approved drugs. BRAF-inhibitors (selective or multikinase BRAF inhibitors) are genetically predicted for drug response in ATC. PIK3CA is a targetable alteration found in 18% of patients, making the PIK3CA inhibitor copanlisib an additional genetically predicted therapy option, followed by 3% for VEGFR2/SRC inhibitor apatinib and the ALK inhibitors.
Alectinib is a second generation oral ALK inhibitor targeting a mutant ALK protein with EML4-ALK fusion. Nonsmall cell lung cancer (NSCLC) treatment.

Alectinib is indicated for:
- Treatment of NSCLC patients with metastatic disease who have ALK-rearranged NSCLC and have not received prior systemic treatment.
- Treatment of NSCLC patients with ALK-rearranged NSCLC who have received prior crizotinib therapy.

Alectinib shows improved outcomes compared to crizotinib, including:
- Better progression-free survival (PFS) rates.
- Lower incidence of brain metastases.
- Lower incidence of adverse events requiring treatment discontinuation.

Alectinib is approved in the United States by the FDA for the treatment of ALK-rearranged NSCLC as a first-line therapy and after crizotinib failure.

Alectinib is associated with:
- Common side effects such as cough, fatigue, and diarrhea.
- Rare side effects like neutropenia, thrombocytopenia, and neurotoxicity.
- Drug interactions with certain medications that can affect the effectiveness of Alectinib or increase the risk of adverse effects.

Alectinib has been shown to improve survival outcomes in ALK-rearranged NSCLC patients, making it an important treatment option in this population.
encorena, also known as BRL-37514, is a kinase inhibitor. Either tumor or normal tissue may have kinase activity in the treatment of late-stage breast cancer, and the use of an inhibitor is typically combined with a hormone therapy to achieve optimal response.

Enfortumab vedotin, a drug approved by the FDA, is a monoclonal antibody-drug conjugate (ADC) that targets the CD30 antigen in patients with advanced or metastatic urothelial carcinoma. It is used in combination with a second-generation tyrosine kinase inhibitor (TKI) or a third-generation TKI to treat patients with advanced or metastatic urothelial carcinoma who have progressed during or after pembrolizumab treatment.

Entrectinib, also known as BBT-3776, is a kinase inhibitor that targets the FGFR-1, FGFR-2, FGFR-3, FGFR-4, MET, and RET kinases. It is approved for use in patients with locally recurrent or metastatic non-small cell lung cancer (NSCLC) who have anaplastic lymphoma kinase (ALK) gene rearrangement or ROS1 gene rearrangement detected by an acceptable method.

Erlotinib hydrochloride is approved to treat EGFR-mutant non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Eribulin mesylate, also known as Halaven, is a microtubule inhibitor approved for the treatment of patients with metastatic breast cancer who have received prior systemic therapy for metastatic disease and who are candidates for further systemic therapy.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

ErbB2/3/4 inhibitors, such as trastuzumab, are used in the treatment of HER2-positive breast cancer. They are typically used in combination with chemotherapy and/or hormonal therapy.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Eribulin mesylate, also known as Halaven, is a microtubule inhibitor approved for the treatment of patients with metastatic breast cancer who have received prior systemic therapy for metastatic disease and who are candidates for further systemic therapy.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.

Erlotinib is a tyrosine kinase inhibitor that targets the EGFR, RET, and MET receptors. It is approved for the treatment of non-small cell lung cancer (NSCLC), advanced or metastatic adenocarcinoma of the breast, and advanced or metastatic colorectal cancer.

Erlotinib is primarily metabolized by CYP3A4 and CYP2C8. Inhibition of these enzymes by other drugs may increase the risk of toxicity.

Erlotinib is approved for the treatment of non-small cell lung cancer (NSCLC) and is used in combination with carboplatin or pemetrexed to treat patients with advanced or metastatic lung adenocarcinoma who have high levels of epithelial cell adhesion molecule (EpCAM) antigen, as determined by an acceptable method.
panobinostat or a decitabine (DAC) inhibitor. The combination of a multtargeted tyrosine kinase inhibitor, such as tafasatimab, as a fourth-line treatment for patients with plasmacytoma and no other treatment options, was one of the possible options. A significant increase in T-cell activity, increase in cytolytic activity, and decrease in cell proliferation were observed in patients receiving panobinostat. The combination of panobinostat and azacitidine resulted in a 5.6 months improvement in progression-free survival compared to chemotherapy alone.

The combination of panobinostat and azacitidine resulted in a 5.6 months improvement in progression-free survival compared to chemotherapy alone.