Increased serum cystatin C levels and responses of pancreatic α- and β-cells in type 2 diabetes

Hui-qing Yuan¹, Jia-xi Miao¹, Jia-ping Xu¹, Su-xiang Zhu¹, Feng Xu¹, Xiao-hua Wang¹, Chun-hua Wang¹, Chao Yu², Xue-qin Wang³, Jian-bin Su¹, Dong-mei Zhang³.

Hui-qing Yuan and Jia-xi Miao contributed equally to the paper

Hui-qing Yuan, e-mail:17864389603@163.com¹
Jia-xi Miao, e-mail:754553468@qq.com¹
Jia-ping Xu, e-mail:1787873026@qq.com¹
Su-xiang Zhu, e-mail:1229789962@qq.com¹
Feng Xu, e-mail: xufeng5205529@163.com¹
Xiao-hua Wang, e-mail: wxhua820911@163.com¹
Chun-hua Wang, e-mail: wchqi_1982@163.com¹
Chao Yu, e-mail: alfa306@126.com²
Xue-qin Wang, e-mail: wangxueqin108@163.com¹
Jian-bin Su, e-mail: sujibzjx@163.com; sujibzjx@ntu.edu.cn¹
Dong-mei Zhang, e-mail: zdm_ntyy@163.com³

¹Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City; No. 6 Haierxiang North Road, Nantong 226001, China
²Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City; No. 6 Haierxiang North Road, Nantong 226001, China
³Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City; No. 6, Haierxiang North Road, Nantong 226001, China

Corresponding author: Jian-bin Su and Dong-mei Zhang,
Jian-bin Su, e-mail: sujibzjx@163.com; sujibzjx@ntu.edu.cn¹
ORCID: https://orcid.org/0000-0002-2138-0263
¹Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City
Dong-mei Zhang, e-mail: zdm_ntyy@163.com³
³Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City; No. 6, Haierxiang North Road, Nantong 226001, China
ABSTRACT

Background: Increased serum cystatin C (CysC) can predict the onset of type 2 diabetes (T2D). Meanwhile, impaired pancreatic α- and β-cell functions get involved in the pathophysiological processes of T2D. So this study was to explore the relationships between serum CysC levels and pancreatic α- and β-cell functions in T2D.

Methods: In this cross-sectional observational study, total 2634 patients with T2D were consecutively recruited. Each recruited patient was received serum CysC test and oral glucose tolerance test for synchronous detection of serum C-peptide and plasma glucagon. As components of pancreatic β-cell function, insulin secretion and sensitivity indices were evaluated by C-peptide area under curve (AUC-CP) and C-peptide-substituted Matsuda’s index (Matsuda-CP), respectively. Fasting glucagon (F-GLA) and post-challenge glucagon calculated by glucagon area under curve (AUC-GLA) were used to assess pancreatic α-cell function. These indices were skewed and were further natural log-transformed (ln).

Results: With quartiles of serum CysC levels ascending, AUC-CP, F-GLA and AUC-GLA were increased, while Matsuda-CP was decreased (p for trend <0.001). Moreover, serum CysC levels were positively related to lnAUC-CP, lnF-GLA and lnAUC-GLA (r=0.241, 0.131 and 0.208, respectively, p<0.001), and inversely related to lnMatsuda-CP (r= −0.195, p<0.001). Furthermore, after controlling for other relevant variables via multivariable linear regression analysis, serum CysC levels were identified to account for lnAUC-CP ($β$=0.178, t=10.518, p<0.001), lnMatsuda-CP ($β$= −0.137, t= −7.118, p<0.001), lnF-GLA ($β$=0.049, t=2.263, p=0.024) and lnAUC-GLA ($β$=0.121, t=5.730, p<0.001).

Conclusions: Increased serum CysC levels may be partly responsible for increased insulin secretion from β-cells, decreased systemic insulin sensitivity, and elevated fasting and postprandial glucagon secretion from α-cells in T2D.

Keywords: Cystatin C; C-peptide; Glucagon; Type 2 diabetes
Introduction

In the last few decades, type 2 diabetes (T2D) is increasingly recognized as a serious, worldwide public health concern, and this has attracted a surge of interests in the pathogenesis of T2D. The critical pathogenesis is mainly due to inadequate compensatory insulin secretion from pancreatic β-cells when they counteract insulin resistance (1,2). In addition, numerous findings highlighted that abnormal α-cell secretion may take part in progression and exacerbation of glycemic disturbances, which is featured by fasting hyperglucagonaemia and reduced suppression of glucagon after food intake (3,4). Thus, both pancreatic α- and β-cell dysfunctions get involved in the pathophysiological processes of T2D (5). Currently, much effort is being made to seek modifiable risk factors of pancreatic α- and β-cell dysfunctions, which may help orientate the formulation of appropriate and effective treatment strategies to ameliorate diabetes and subsequent diabetes-related prognosis.

Cystatin C is small molecular weight proteins of approximately 13.3kDa that is synthesized and secreted by all nucleated cells in every human tissue, including kidney, liver, pancreas, intestine, etc.(6,7) Due to its free filtration through the glomerulus and then complete reabsorption and degradation by proximal tubular cells without secretion (8,9), serum CysC is considered as a sensitive biomarker for early kidney dysfunction. In addition to be an ubiquitously expressed measuring substance, CysC has been recognized as a functional protein that directly linked to many pathophysiological processes through multiple mechanisms. It is involved in immunological regulation (antigen procession, cytokines synthesis and apoptosis), autophagy, bone remodeling, atherosclerosis, tumor metastasis, as well as roles in inflammation and amyloid angiopathy(10,11).

Actually, CysC is a disease-associated protein, and alteration in CysC levels may suggest important clinical implications. Serum CysC levels were reported to be associated, in a dose-dependent manner, with an increased risk of coronary artery diseases (CAD), cerebrovascular accidents and mortality from all causes in the general population(12-14). Moreover, increased serum CysC levels have been well
established to account for common complications in diabetic population, such as diabetic kidney disease (15), diabetic retinopathy (16), diabetic peripheral neuropathy (17), diabetic foot ulceration (18) and cardiovascular diseases (19,20). Additionally, there is accumulative evidence that elevated serum CysC levels are responsible for incidence of metabolic syndrome and T2D (21-23). Those metabolic diseases and their related complications always accompanied by a background of pancreatic α- and β-cell dysfunctions. Therefore, it is reasonable to speculate that CysC overexpression may be central to the T2D pathogenesis. However, no relevant literature has systematically investigated the associations of serum CysC levels with pancreatic α- and β-cell functions in T2D.

Therefore, the present study is performed to explore the relationship between increased serum CysC levels and responses of pancreatic α- and β-cells in T2D.

Methods

Study design and patient recruitment

The present study is a part of Diabetes Clinical Research Center Project that authorized and funded by Nantong Science and Technology Bureau. We used a cross-sectional observational design to conduct this study. The study design was reviewed and approved by the Human Study Review Committee of Affiliated Hospital 2 of Nantong University. At the recruitment stage, we placed a notification at Endocrinology Department of our hospital to recruit patients for this study from January 2016 to February 2021. Eligible patients were between 25 and 75 years of age, diagnosed T2D according to the reference published by American Diabetes Association in 2015(24). Patients would be excluded if they had the following conditions: (1) presence of diabetes-associated autoantibodies; (2) previous malignancies; (3) severe cardiovascular diseases, such as myocardial infarction; (4) ischemic and hemorrhagic stroke; (5) chronic liver diseases, such as viral hepatitis and alcoholic hepatitis; (6) chronic kidney diseases, and estimated glomerular filtration rate(eGFR)<60ml/min/1.73m²; (7) hyperthyroidism or hypothyroidism; (8) current treatment with systemic corticosteroids; (9) recent use of glucose
cotransporter-2 inhibitors (SGLT-2Is); (10) connective tissue diseases. At last, complete data from 2634 eligible patients were qualified for this cross-sectional study. The study conduction was adhered to the Declaration of Helsinki involving research of human subjects, and all patients signed an informed consent when admitted to the study.

Clinical data collection

Experienced physicians were trained to collect clinical data from all patients. These data included demographic data (such as age, sex and blood pressure), medical history (such as diabetes duration, history of hypertension and smoking), prescription information (such as glucose-lowering therapies and statins treatments), and biochemical measurements. Glucose-lowering therapies were acquired by searching the electronic medical record system, and then were categorized into subclasses, which included insulin injections, sulfonylureas (SUs), metformin (MET), thiazolidinediones (TZDs), α-glucosidase inhibitors (AGIs), dipeptidyl peptidase-4 inhibitors (DPP-4Is), glucose cotransporter-2 inhibitors (SGLT-2Is), and glucagon-like peptide-1 receptor agonists (GLP-1RAs).

Fasting venous blood samples were taken to detect biochemical indices, such as serum CysC levels, hepatic function index, creatinine, uric acid (UA), lipid profiles, whole blood glycosylated hemoglobin A1c (HbA1c), etc. The serum CysC was measured by latex-enhanced immunoturbidimetry in an automated biochemical analyzer (Model 7600, Hitachi). The renal function index, eGFR, was assessed by the equation from Modification of Diet in Renal Disease (MDRD) study (25), i.e. $eGFR_M$.

Assessment of pancreatic α- and β-cell functions

Each patient was undergone an oral glucose tolerance test using 75-g anhydrous glucose early in the morning under fasting status. Venous blood samples were draw at 0minutes, 30minutes, 60minutes, 120minutes, and 180minutes for synchronous detection of serum glucose, serum C-peptide and plasma glucagon. Insulin was substituted by C-peptide in the β-cell function indices to avoid interference by exogenous insulin. As components of pancreatic β-cell functions, β-cell secretion and insulin sensitivity indices were evaluated by C-peptide area under curve.
(AUC-CP) (26) and C-peptide-substituted Matsuda’s index (Matsuda-CP) (27), respectively. Fasting glucagon (F-GLA) and post-challenge glucagon calculated by glucagon area under the curve (AUC-GLA) were applied to evaluate pancreatic α-cell function. C-peptide was measured with the chemiluminescence in an immunoassay analyzer (DxI 800, Beckman Coulter), and glucagon was measured with the radioimmunoassay in an automated γ-counter (GC-1200, USTC Zonkia).

Statistical analysis

Clinical variables of the patients are presented for the total and four subgroups of first, second, third and fourth quartile (Q1, Q2, Q3 and Q4) of serum CysC levels (Table 1). Descriptive statistics for the data, including mean with standard deviation, median with 25–75% interquartile range, and frequency with percentage, were preformed according to the data type and distribution. Islet α- and β-cell function indices were non-normally distributed data, and were natural-logarithm transformed, such as lnAUC-CP, lnMatsuda-CP, lnF-GLA and lnAUC-GLA. One-way analysis of variance (ANOVA) with linear polynomial contrasts, Jonckheere-Terpstra test, and chi-squared test with linear-by-linear association were preformed to assess the trends of corresponding data type in four subgroups.

Moreover, we applied Pearson’s correlation analysis to assess the correlation of serum CysC levels with pancreatic α- and β-cell function indices (Figure 1). Considering that HbA1c, eGFR and glucose-lowering therapies may have impacts on these correlations, the partial correlation analysis was applied to achieve the actual associations of serum CysC levels with lnAUC-CP, lnMatsuda-CP, lnF-GLA and lnAUC-GLA by adjusting for HbA1c, eGFR and glucose-lowering therapies (Figure 2). Furthermore, we applied multivariable linear regression analysis to determine whether serum CysC levels had an independent effect on pancreatic α- and β-cell function indices (lnAUC-CP, lnMatsuda-CP, lnF-GLA and lnAUC-GLA) by gradually adjusting effects of other clinical relevant variables in Model 1, Model 2 and Model 3 (Table 2).

We used standard version of SPSS 19.0 for Windows (IBM Co., Armonk, NY, USA) to input and analyze the clinical variables. During statistical analysis, statistical
significance was identified if \(p \) value less than 0.05.

Result

Clinical characteristics of patients

Table 1 has displayed the clinical characteristics of the patients with T2D. The serum CysC levels of all recruited patients were 0.93±0.36mg/L, with a range of 0.1–4.5mg/L. The ranges of the serum CysC quartiles were 0.1–0.7mg/L (Q1), 0.8–0.9mg/L (Q2), 1.0–1.1mg/L (Q3) and 1.2–4.5mg/L (Q4), respectively. From Q1, Q2, Q3 to Q4 of serum CysC levels, AUC-CP, F-GLA and AUC-GLA were increased, while Matsuda-CP was decreased (\(p \) for trend <0.001). Moreover, with ascending quartiles of serum CysC levels, age, body mass index (BMI), systolic blood pressure (SBP), diabetic duration, aspartate aminotransferase (AST), triglycerides (TG), UA, hypertension prevalence and statins treatments were significantly increased, while ratio of female, total cholesterol (TC), high density lipoprotein cholesterol (HDLc), eGFR\(_M\) and HbA1c were decreased, but diastolic blood pressure (DBP), alanine aminotransferase (ALT) and low-density lipoprotein cholesterol (LDLc) did not exhibit any difference between the quartiles of CysC levels. As to the glucose-lowering therapies, lifestyle intervention alone and frequency of AGIs taken were increased, while MET, TZDs and DPP-4Is was decreased, when the quartiles of serum CysC increased; but insulin injections, SUs and GLP-1RAs were comparable between the quartiles of CysC levels.

Correlations between serum CysC levels and indices of \(\alpha \)- and \(\beta \)-cell functions

Pearson’s correlation analysis showed that lnAUC-CP, lnF-GLA and lnAUC-GLA had positive correlations with serum CysC levels (\(r = 0.241, 0.131 \) and 0.208, respectively, \(p < 0.001 \)), while lnMatsuda-CP was in negative correlation with serum CysC levels (\(r = -0.195, p < 0.001 \)). And graphic representation of the relationships is shown in Figure 1. Additionally, after controlling for the impacts of HbA1c, eGFR\(_M\) and glucose-lowering therapies by the partial correlation analyses, lnAUC-CP, lnF-GLA and lnAUC-GLA still remained positively related to serum CysC levels (\(r = 0.247, 0.138 \) and 0.183, respectively, \(p < 0.001 \)), and lnMatsuda-CP still remained
negatively related to serum CysC levels ($r=-0.185, \ p<0.001$). Graphic representation of the relationships is also shown in Figure 2.

Considering the close correlation between serum CysC and kidney function, we made a partial correlation analysis to adjust for eGFR only. We found that serum CysC levels still remained associated with AUC-CP, Matsuda-CP, F-GLA and AUC-GLA ($r=0.181, -0.147, 0.128$ and 0.177, respectively, $p<0.001$) after adjusting for eGFR (Supplementary Figure 1).

Among the recruited T2D patients, 10.4% ($n=273$) were lifestyle intervention alone (without antidiabetic agents). When we restricted our analysis in these T2D patients without antidiabetic agents ($n=273$), we found serum CysC levels were correlated with AUC-CP ($r=0.273, p<0.001$), Matsuda-CP ($r=-0.277, p<0.001$), and AUC-GLA ($r=0.227, p<0.001$), but not F-GLA ($r=0.086, p=0.156$) (Supplementary Figure 2). Furthermore, after adjusting for eGFR$_{M}$ by the partial correlation analysis, we found serum CysC levels were correlated with all α- and β-cell function indices in these T2D patients without antidiabetic agents, i.e., AUC-CP ($r=0.266, p<0.001$), Matsuda-CP ($r=-0.269, p<0.001$), F-GLA ($r=0.129, p=0.033$) and AUC-GLA ($r=0.214, p<0.001$) (Supplementary Figure 3).

Analyses to explore the effects of serum CysC levels on outcomes of α- and β-cell function indices

Table 2 exhibited the independent effects of serum CysC levels on consequences of pancreatic β-cell function (lnAUC-CP and lnMatsuda-CP) and α-cell function (lnF-GLA and lnAUC-GLA) by multivariable linear regression analysis. In the crude Model 0, serum CysC levels were significantly associated with lnAUC-CP ($\beta=0.241$, $t=12.747, p<0.001$, and $R^2=0.058$), lnMatsuda-CP ($\beta=-0.195$, $t=-10.206$, $p<0.001$, and $R^2=0.038$), lnF-GLA ($\beta=0.131$, $t=6.782$, $p<0.001$, and $R^2=0.017$), lnAUC-GLA ($\beta=0.208$, $t=10.921$, $p<0.001$, and $R^2=0.043$). After controlling for other clinical relevant variables in Model 1, Model 2 and Model 3, the adjusted R^2 was exhibited to be progressively increased from Model 0 to Model 3. In the completely adjusted Model 3, serum CysC levels were exhibited to remain independently account for
lnAUC-CP ($\beta=0.178$, $t=10.518$, $p<0.001$, partial $R^2=2.89\%$, and total $R^2=54.7\%$), lnMatsuda-CP ($\beta=-0.137$, $t=-7.118$, $p<0.001$, partial $R^2=2.16\%$, and total $R^2=41.3\%$), lnF-GLA ($\beta=0.049$, $t=2.263$, $p=0.024$, partial $R^2=0.24\%$, and total $R^2=30.1\%$), lnAUC-GLA ($\beta=0.121$, $t=5.730$, $p<0.001$, partial $R^2=1.46\%$, and total $R^2=32.8\%$).

Therefore, after adjusting for other clinical relevant variables, serum CysC levels may independently explain 2.89% variation of AUC-CP, explain 2.16% variation of Matsuda-CP, explain 0.24% variation of F-GLA, and 1.46% variation of AUC-GLA. Insulin secretion index, AUC-CP, may be more involved in the serum concentration of CysC when compare to other α- and β-cell function indices.

Discussion

In the present study, we explore the relationship between serum CysC levels and pancreatic α- and β-cell functions in 2634 patients with T2D. The main findings of our study were as follows: first, with quartiles of serum CysC levels ascending, AUC-CP, F-GLA and AUC-GLA were increased, while Matsuda-CP was decreased; second, after controlling for other various clinical variables, serum CysC levels were positively and independently responsible for AUC-CP, F-GLA and AUC-GLA, and negatively and independently responsible for Matsuda-CP; third, serum CysC levels may independently explain 2.89% variation of AUC-CP, explain 2.16% variation of Matsuda-CP, explain 0.24% variation of F-GLA, and 1.46% variation of AUC-GLA; fourth, insulin secretion index (AUC-CP) may be more involved in the serum concentration of CysC when compare to other α- and β-cell function indice. In brief, serum CysC levels closely connected to pancreatic α-cell and β-cell dysfunctions.

CysC serves as a functional protein that directly plays pleiotropic roles in many pathophysiological processes in human body, let alone a marker for early kidney dysfunction. There are always two-sided natures of everything, and this is also true for CysC levels. On one hand, increased serum CysC levels have been demonstrated to be associated with several adverse consequences, such as overweight (28), obesity...
metabolic syndrome, hypertension, Hashimoto's thyroiditis, cancer prognosis, progression to pre-diabetes, and incidence of diabetes. What’s more, serum CysC levels were dose dependent and positively related to cardio-cerebrovascular risks of general population and diabetic complications in population with T2D. On the other hand, CysC-mediated neuroprotective effects had also been found in preclinical models of the disease. Reduced serum CysC levels are highly associated with Alzheimer’s disease and may be an independent prediction marker for Alzheimer’s disease. Upregulation of CysC expression is identified to be a potential therapeutic target for Parkinson’s disease. Approach to increase CysC is also a potential candidate against stroke through preserving lysosomal membranes integrity. In our present study, increased serum CysC levels were closely associated with greater BMI and prevalence of hypertension in patients with T2D. Additionally, increased serum CysC levels were also shown to be associated with indices of pancreatic α- and β-cell dysfunctions in those patients.

Now that increased serum CysC levels are initially linked to obesity-related diseases, and can predict the incidence of pre-diabetes and diabetes, it is very likely that CysC overexpression plays a central role in the pathophysiological processes of T2D. A previous study by Uruska et al. reported that higher levels of serum CysC were indicative of a higher degree of insulin resistance evaluated by glucose disposal rate in type 1 diabetes. Reutens and colleagues demonstrated that both central adiposity and insulin resistance partially mediated the relationship between increased serum CysC levels and progression of T2D. Lee et al. also found that there were independent relationships between increased serum CysC levels, insulin resistance and inflammation biomarkers, which may interpret the linkage between serum CysC levels and CVD in T2D independent of kidney function. Moreover, Yokoyama et al. conducted a study in forty patients with T2D, and they revealed that serum CysC levels were positively correlated with postprandial insulin secretion after anti-diabetic treatment (insulin-stimulated mitiglinide therapy) independent of postprandial glucose levels. In our present study, we observed that increased serum CysC levels were...
responsible for blunted insulin sensitivity evaluated by Matsuda-CP and increased insulin secretion of β-cells evaluated by AUC-CP in patients with T2D. Matsuda-CP is a surrogate indicator of the overall insulin sensitivity that can efficiently assess the sensitivity of the visceral and peripheral tissues to insulin (41), and AUC-CP is a reliable indicator for measurement of post-challenge β-cell secretion function (26). Therefore, serum CysC presented a bidirectional regulatory effect on pancreatic β-cell function. Increased serum CysC levels seemed to on one hand decrease systemic insulin sensitivity, and on the other hand increase insulin secretion from β-cells in patients with T2D.

There are some possible mechanisms for increased CysC expression linking to aggravated insulin resistance and increased insulin secretion from β-cells. It is widely accepted that pathogenesis of insulin resistance is involved with ectopic lipid accumulation and systemic inflammation (42). CysC mRNA expression and CysC release by subcutaneous and omental adipose tissue increased two- to threefold in obese when compared to these in nonobese subjects (43). Meanwhile, systemic inflammation indicators, such as interleukin-6, tumor necrosis factor-α (TNF-α) and C-reactive protein, are closely related to serum CysC levels (14,30,44,45). These evidences suggested that increased CysC expression directly participated in the pathogenesis of insulin resistance. At same time, insulin resistance may in turn induce a compensatory insulin secretory response. Moreover, CysC exerted dual neuronal–vascular roles in promoting neuronal survival and angiogenesis by the regulation of the secreted protein vascular endothelial growth factor (VEGF) in Parkinson’s disease model (34). VEGF is abundantly expressed in islet β-cells, serving as an essential modulator of the islet microvasculature (46). CysC may promote β-cells survival and islet angiogenesis by the regulation of VEGF-mediated pathways. These evidences supported that increased CysC may facilitate insulin secretion from β-cells.

Up to now, no previous study has examined the association between serum CysC levels and pancreatic islet α-cell function. Our study found that increased serum CysC levels were associated with elevated fasting and postchallenge glucagon levels (F-GLA and AUC-GLA, respectively) in patients with T2D. Increased CysC
expression may contribute directly to pathogenesis of insulin resistance, which subsequently leads to fasting hyperglucagonaemia, less early glucagon suppression and elevated postload 2-hour plasma glucagon levels (3,47,48). In addition, increased CysC concentration may induce inflammatory response by enhancing TNF-α expression (30,49), and inflammation may in turn lead to β-cell dedifferentiation (50,51,52), characterized by loss of β-cell identity and expression of glucagon in these β-cells (53). Moreover, our previous study has demonstrated that fatty acid-binding protein 4, an inflammatory factor primarily originated from adipose tissue, were positively associated with fasting and postprandial glucagon levels in T2D (54). Collectively, our present study and the relevant literatures indicated that increased serum CysC levels may be contributed to the elevated fasting and postprandial glucagon in patients with T2D.

We do need to address several limitations of the present study. First, we used a cross-sectional observational design to conduct this study. Consequently, causality may not be inferred between increased serum CysC levels and responses of pancreatic α- and β-cells in type 2 diabetes. We need a longitudinal study to improve this defect. Second, our study is confined to the cases in a single center, and the finding may have limited generalizability. Third, our present study only revealed the clinical relevance, so basic research was needed to investigate the role of CysC expression in the in the pathophysiological processes of T2D.

Conclusions

In summary, increased serum CysC levels may be independently responsible for increased insulin secretion from β-cells, decreased systemic insulin sensitivity, and elevated fasting and postprandial glucagon secretion from α-cells in T2D, which indicate that increased serum CysC levels may take part in the impaired pancreatic α- and β-cell functions in patients with T2D.
Declaration of interest
The authors declared that there was no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
The study was funded by the Social Development Projects of Nantong (MS12019019, HS2020005)

Ethical statement
The study design was reviewed and approved by the Human Study Review Committee of Affiliated Hospital 2 of Nantong University. The conduction of study was adhered to the Declaration of Helsinki involving research of human subjects, and all patients signed an informed consent when admitted to the study.

Availability of data and materials
The study data could be provided to the interested researchers upon reasonable requests. The requests for data should be made to the corresponding author of the study.

Authors’ contributions
JbS and DmZ contributed to the conception and design of the study. FX, XhW, ChW and CY contributed to the data collection and assembly. HqY, JxM, JpX, SxZ and JbS contributed to the data analysis and interpretation. HqY and JxM contributed to the initial drafting of the manuscript. JbS and XqW revised the manuscript. XqW provided the administrative support. All authors were in agreement regarding the final manuscript.

References
5 Moon JS & Won KC. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the

10 Xu Y, Ding Y, Li X & Wu X. Cystatin C is a disease-associated protein subject to multiple regulation. *Immunology and cell biology* 2015 93 442-51. (https://doi.org/10.1038/icb.2014.121)

39 Lee SH, Park SA, Ko SH, Yim HW, Ahn YB, Ahn HY, Son HY & Kwon HS. Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients. *Metabolism* 2010 59 241-6. (https://doi.org/10.1016/j.metabol.2009.07.019)

41 Matsuda M & DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. *Diabetes Care* 1999 22 1462-70.

50 Nordmann TM, Dror E, Schulze F, Traub S, Berishvili E, Barbieux C, Böni-Schnetzler M & Donath MY. The Role of Inflammation in β-cell Dedifferentiation. *Scientific reports* 2017 7 6285. (https://doi.org/10.1038/s41598-017-06731-w)

Table 1 Clinical characteristics of all recruited patients

Table 2 Multivariable linear regression models exhibiting the effects of serum CysC levels on outcomes of pancreatic α- and β-cell function

Figure 1 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)

Figure 2 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices partially adjusted for HbA1c, eGFR_M and glucose-lowering therapies (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)

Supplementary Figure 1 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices partially adjusted for eGFR_M (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)

Supplementary Figure 2 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices in T2D without antidiabetic agents (n=273) (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)

Supplementary Figure 3 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices in T2D without antidiabetic agents after adjusting for eGFR_M (n=273) (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)
<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Quartiles of serum cystatin C</th>
<th>Test statistic</th>
<th>p for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Serum cystatin C (mg/L)</td>
<td>0.93±0.36</td>
<td>0.58±0.13</td>
<td>0.85±0.05</td>
<td>1.05±0.50</td>
</tr>
<tr>
<td>(range)</td>
<td>(0.1–4.5)</td>
<td>(0.1–0.7)</td>
<td>(0.8–0.9)</td>
<td>(1.0–1.1)</td>
</tr>
<tr>
<td>n</td>
<td>2634</td>
<td>746</td>
<td>810</td>
<td>560</td>
</tr>
<tr>
<td>Age (year)</td>
<td>53.3±9.7</td>
<td>49.3±8.9</td>
<td>52.2±9.1</td>
<td>55.1±9.3</td>
</tr>
<tr>
<td>Female, n(%)</td>
<td>1457(44.7)</td>
<td>387(51.9)</td>
<td>334(41.2)</td>
<td>224(40.0)</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>25.4±3.7</td>
<td>25.0±3.7</td>
<td>25.3±3.6</td>
<td>25.6±3.7</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>135.7±18.0</td>
<td>133.1±16.5</td>
<td>135.0±18.1</td>
<td>137.0±17.9</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>77.5±11.4</td>
<td>81.2±33.2</td>
<td>79.3±10.7</td>
<td>80.4±31.3</td>
</tr>
<tr>
<td>Diabetic duration (year)</td>
<td>5(1–10)</td>
<td>3(3–8)</td>
<td>4(1–4)</td>
<td>5(1–10)</td>
</tr>
<tr>
<td>Glucose-lowering therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle alone, n(%)</td>
<td>273(10.4)</td>
<td>66(8.8)</td>
<td>70(8.6)</td>
<td>67(12.0)</td>
</tr>
<tr>
<td>Insulin injections, n(%)</td>
<td>1427(54.2)</td>
<td>415(55.6)</td>
<td>432(53.3)</td>
<td>298(53.2)</td>
</tr>
<tr>
<td>SUs, n(%)</td>
<td>1285(48.8)</td>
<td>355(47.6)</td>
<td>420(51.9)</td>
<td>281(50.2)</td>
</tr>
<tr>
<td>MET, n(%)</td>
<td>1397(53.0)</td>
<td>432(57.9)</td>
<td>441(54.4)</td>
<td>293(52.3)</td>
</tr>
<tr>
<td>TZDs, n(%)</td>
<td>787(29.9)</td>
<td>245(32.8)</td>
<td>248(30.6)</td>
<td>164(29.3)</td>
</tr>
<tr>
<td>AGIs, n(%)</td>
<td>617(23.4)</td>
<td>162(21.7)</td>
<td>179(22.1)</td>
<td>134(23.9)</td>
</tr>
<tr>
<td>DPP-4Is, n(%)</td>
<td>686(26.0)</td>
<td>211(28.3)</td>
<td>221(27.3)</td>
<td>133(23.8)</td>
</tr>
<tr>
<td>GLP-1RAs, n(%)</td>
<td>73(2.8)</td>
<td>29(3.9)</td>
<td>8(1.0)</td>
<td>23(4.1)</td>
</tr>
<tr>
<td>Hypertension, n(%)</td>
<td>1121(42.6)</td>
<td>224(30.0)</td>
<td>326(40.2)</td>
<td>262(46.8)</td>
</tr>
<tr>
<td>Statins treatments, n(%)</td>
<td>1011(38.4)</td>
<td>201(26.9)</td>
<td>294(36.3)</td>
<td>230(41.1)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>17(12–27)</td>
<td>17(12–26)</td>
<td>19(13–28)</td>
<td>18(12–29)</td>
</tr>
<tr>
<td></td>
<td>Subgroup A (13–21)</td>
<td>Subgroup B (14–22)</td>
<td>Subgroup C (13–21)</td>
<td>Subgroup D (14–22)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>16(14–22)</td>
<td>16(14–22)</td>
<td>17(14–23)</td>
<td>17(14–22)</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.67 (1.08–2.83)</td>
<td>1.58 (1.04–2.59)</td>
<td>1.74 (1.12–2.72)</td>
<td>1.78 (1.18–2.89)</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>4.48±1.02</td>
<td>4.48±1.30</td>
<td>4.44±0.94</td>
<td>4.40±1.08</td>
</tr>
<tr>
<td>HDLC (mmol/L)</td>
<td>1.08±0.30</td>
<td>1.10±0.29</td>
<td>1.06±0.27</td>
<td>1.04±0.30</td>
</tr>
<tr>
<td>LDLC (mmol/L)</td>
<td>2.50±0.75</td>
<td>2.57±0.82</td>
<td>2.58±0.74</td>
<td>2.51±0.83</td>
</tr>
<tr>
<td>UA (μmol/L)</td>
<td>348.1±88.0</td>
<td>291.9±93.0</td>
<td>311.6±92.4</td>
<td>348.1±106.7</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td>123.8±23.7</td>
<td>126.7±19.0</td>
<td>119.0±18.2</td>
<td>106.7±18.7</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>9.10±2.31</td>
<td>8.96±2.20</td>
<td>8.95±2.20</td>
<td>8.78±2.25</td>
</tr>
<tr>
<td>AUC-CP (ng/mL·hr)</td>
<td>(5.36–12.96)</td>
<td>(5.33–12.31)</td>
<td>(6.04–13.63)</td>
<td>(6.83–17.60)</td>
</tr>
<tr>
<td>Matsuda-CP</td>
<td>570.56</td>
<td>581.3</td>
<td>538.8</td>
<td>454.8</td>
</tr>
<tr>
<td>F-GLA (pg/mL)</td>
<td>123.4</td>
<td>121.9</td>
<td>125.0</td>
<td>140.33</td>
</tr>
<tr>
<td>AUC-GLA (pg/mL·hr)</td>
<td>(390.0–870.8)</td>
<td>(412.0–785.8)</td>
<td>(381.5–788.6)</td>
<td>(316.4–725.9)</td>
</tr>
<tr>
<td>ln AUC-CP (ng/mL·hr)</td>
<td>2.09±0.70</td>
<td>2.05±0.66</td>
<td>2.18±0.63</td>
<td>2.38±0.68</td>
</tr>
<tr>
<td>ln Matsuda-CP</td>
<td>6.39±0.58</td>
<td>6.42±0.56</td>
<td>6.32±0.55</td>
<td>6.18±0.58</td>
</tr>
<tr>
<td>ln F-GLA (pg/mL)</td>
<td>4.70±0.57</td>
<td>4.68±0.55</td>
<td>4.67±0.61</td>
<td>4.84±0.57</td>
</tr>
<tr>
<td>ln AUC-GLA (pg/mL·hr)</td>
<td>5.87±0.43</td>
<td>5.86±0.41</td>
<td>5.88±0.45</td>
<td>6.01±0.44</td>
</tr>
</tbody>
</table>

Note: Linear polynomial contrasts of ANOVA(a), Jonckheere-Terpstra test(b), and linear-by-linear association of chi-squared test(c) were performed to detect the trends of corresponding data type in four subgroups.

SUs: sulfonylureas; MET: metformin (MET); TZDs: thiazolidinediones; AGIs: α-glucosidase inhibitors; DPP-4Is: dipeptidyl peptidase-4 inhibitors; SGLT-2Is: glucose cotransporter-2 inhibitors; GLP-1RAs: glucagon-like peptide-1 receptor agonists.

AUC-CP: C-peptide area under curve; Matsuda-CP: C-peptide-substituted Matsuda’s index; F-GLA: Fasting glucagon; AUC-GLA: glucagon area under the curve.
Table 2 Multivariable linear regression models exhibiting the effects of serum CysC levels on outcomes of pancreatic α- and β-cell function

<table>
<thead>
<tr>
<th>Models</th>
<th>B (95% CI)</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>Partial R² for CysC (%)</th>
<th>Total R² for model (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In AUC-CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 0: crude</td>
<td>0.472(0.399 to 0.544)</td>
<td>0.241</td>
<td>12.747</td>
<td><0.001</td>
<td>5.81</td>
<td>5.81</td>
</tr>
<tr>
<td>Model 1: age, sex, BMI, SBP, DBP, diabetes duration, hypertension and statins</td>
<td>0.494(0.422 to 0.565)</td>
<td>0.253</td>
<td>13.579</td>
<td><0.001</td>
<td>6.60</td>
<td>22.0</td>
</tr>
<tr>
<td>Model 2: model 1 + ALT, AST, lipid profiles, UA, eGFR_M, F-GLA and AUC-GLA</td>
<td>0.322(0.242 to 0.403)</td>
<td>0.160</td>
<td>7.856</td>
<td><0.001</td>
<td>2.46</td>
<td>28.3</td>
</tr>
<tr>
<td>Model 3: model 2 + HbA1c and glucose-lowering therapies</td>
<td>0.357(0.290 to 0.423)</td>
<td>0.178</td>
<td>10.518</td>
<td><0.001</td>
<td>2.89</td>
<td>54.7</td>
</tr>
<tr>
<td>In Matsuda-CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 0: crude</td>
<td>–0.317(–0.378 to –0.256)</td>
<td>–0.195</td>
<td>–10.206</td>
<td><0.001</td>
<td>3.81</td>
<td>3.81</td>
</tr>
<tr>
<td>Model 1: age, sex, BMI, SBP, DBP, diabetes duration, hypertension and statins</td>
<td>–0.318(–0.378 to –0.258)</td>
<td>–0.196</td>
<td>–10.328</td>
<td><0.001</td>
<td>3.96</td>
<td>19.5</td>
</tr>
<tr>
<td>Model 2: model 1 + ALT, AST, lipid profiles, UA, eGFR_M, F-GLA and AUC-GLA</td>
<td>–0.191(–0.259 to –0.123)</td>
<td>–0.114</td>
<td>–5.504</td>
<td><0.001</td>
<td>1.21</td>
<td>26.4</td>
</tr>
<tr>
<td>Model 3: model 2 + HbA1c and glucose-lowering therapies</td>
<td>–0.231(–0.294 to –0.167)</td>
<td>–0.137</td>
<td>–7.118</td>
<td><0.001</td>
<td>2.16</td>
<td>41.3</td>
</tr>
<tr>
<td>In F-GLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 0: crude</td>
<td>0.211(0.150 to 0.272)</td>
<td>0.131</td>
<td>6.782</td>
<td><0.001</td>
<td>1.72</td>
<td>1.72</td>
</tr>
<tr>
<td>Model 1: age, sex, BMI, SBP, DBP, diabetes duration, hypertension and statins</td>
<td>0.213(0.148 to 0.279)</td>
<td>0.133</td>
<td>6.371</td>
<td><0.001</td>
<td>1.54</td>
<td>2.12</td>
</tr>
<tr>
<td>Model 2: model 1 + ALT, AST, lipid profiles, UA, eGFR_M, AUC-CP, Matsuda-CP and AUC-GLA</td>
<td>0.065(–0.001 to 0.132)</td>
<td>0.040</td>
<td>1.932</td>
<td>0.053</td>
<td>0.16</td>
<td>28.5</td>
</tr>
<tr>
<td>Model 3: model 2 + HbA1c and glucose-lowering therapies</td>
<td>0.081(0.011 to 0.151)</td>
<td>0.049</td>
<td>2.263</td>
<td>0.024</td>
<td>0.24</td>
<td>30.1</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

In AUC-GLA

Model 0: crude	0.252(0.207 to 0.297)	0.208	10.921	<0.001	4.33	4.33
Model 1: age, sex, BMI, SBP, DBP, diabetes duration, hypertension and statins	0.260(0.211 to 0.309)	0.215	10.450	<0.001	4.04	5.18
Model 2: model 1 + ALT, AST, lipid profiles, UA, eGFR, AUC-CP, Matsuda-CP and F-GLA	0.152(0.103 to 0.201)	0.122	6.064	<0.001	1.49	31.6
Model 3: model 2 + HbA1c and glucose-lowering therapies	0.151(0.100 to 0.203)	0.121	5.730	<0.001	1.46	32.8

Note:
AUC-CP: C-peptide area under curve; Matsuda-CP: C-peptide-substituted Matsuda’s index; F-GLA: Fasting glucagon; AUC-GLA: glucagon area under the curve.
Figure 1 Scatter plots for relationship between serum CysC levels and pancreatic α- and β-cell function indices (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)
Figure 2 Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices partially adjusted for HbA1c, eGFR_M and glucose-lowering therapies
(A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)
Supplementary Figure 1
Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices partially adjusted for eGFR_M (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)
Supplementary Figure 2
Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices in T2D without antidiabetic agents (n=273) (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)
Supplementary Figure 3
Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices in T2D without antidiabetic agents after adjusting for eGFRα (n=273). (A: lnAUC-CP; B: lnMatsuda-CP; C: lnF-GLA; D: lnAUC-GLA)