PERIOPERATIVE CHANGES OF FGF23 IN PATIENTS UNDERGOING SURGERY FOR PRIMARY HYPERPARATHYROIDISM

Magdaléna Fořtová, Lenka Hanousková, Martin Valkus, Jana Čepová, Richard Průša, Karel Kotaška

Department of Medical Chemistry and Clinical Biochemistry, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic

Corresponding author:

Karel Kotaška

Department of Medical Chemistry and Clinical Biochemistry
2nd Faculty of Medicine, Charles University
University Hospital Motol
V Uvalu 84
150 06 Prague 5

e-mail: kotaska@email.cz

Short title: Changes of FGF23 in primary hyperparathyroidism

Key words: iFGF23, cFGF23, primary hyperparathyroidism, parathyroid adenoma

Word Count: 3905
Abstract

Background: Fibroblast growth factor-23 (FGF23) is a key regulator of urine phosphate excretion. The aim of the study was to investigate the perioperative (intraoperative and postoperative) changes of plasma intact and C-terminal FGF23 (iFGF23, cFGF23) concentrations in patients with primary hyperparathyroidism (pHPT) submitted to surgery.

Materials and methods: Study involved 38 adult patients with pHPT caused by adenoma. PTH levels were investigated intraoperatively (just before the incision and 10 minutes after adenoma excision). cFGF23, iFGF23, phosphate, eGFR and P1NP were measured intraoperatively and postoperatively (next day after the surgery).

Results: PTH levels decreased intraoperatively (13.10 vs. 4.17 pmol/L, P<0.0001). FGF23 levels measured intraoperatively were at the upper level of reference interval. cFGF23 decreased postoperatively compared with values measured just before the incision (cFGF23: 89.17 vs. 22.23 RU/mL, P<0.0001). iFGF23 decreased as well, but postoperative values were low. Postoperative inorganic phosphate values increased (1.03 mmol/L vs. 0.8 mmol/L, P=0.0025). We proved significant negative correlation of perioperative FGF23 with inorganic phosphate (cFGF23: Spearman r=-0.253, P=0.0065; iFGF23: Spearman r=-0.245, P=0.0085). We also found FGF23 values just before incision correlated with eGFR (cystatin C) (cFGF23: Spearman r=-0.499, P=0.0014; iFGF23: Spearman r=-0.413, P=0.01).

Conclusion: Intraoperative iFGF23 and cFGF23 did not change despite PTH decreased significantly. cFGF23 and iFGF23 significantly decreased one day after parathyroidectomy and are associated with increase of inorganic phosphate in pHPT patients. cFGF23 and iFGF23 just before incision correlated with eGFR (cystatin C). The similar results found in both iFGF23 and cFGF23 suggest each could substitute the other.
INTRODUCTION

About 80 - 90 % of primary hyperparathyroidism (pHPT) cases are caused by parathyroid adenoma. Long-term increased PTH secretion leads to a generalized disorder of calcium, phosphate and bone metabolism. The most relevant information on parathyroid activity is given by the determination of plasma intact parathyroid hormone (PTH) concentration. Decreased PTH concentrations after parathyroidectomy indicate successful adenoma excision. Intraoperative determination of PTH is frequently used indicator of successful parathyroidectomy, nevertheless, the information about changes of Fibroblast growth factor 23 (FGF23) levels is scarce. FGF23 is phosphaturic peptide promoting phosphate excretion in urine. It is a member of the class of factors called phosphatonin which regulate phosphate metabolism. It has a key role in maintaining normophosphatemia. FGF23 is highly expressed in osteocytes, some authors also mention osteoblastic expression and it is released from the bone to a lesser extent from the spleen and brain and, under pathophysiological conditions, from other organs, including the kidney and the liver. FGF23 synthesis is stimulated by phosphate, 1,25 dihydroxyvitamin D (1,25(OH)_2D), PTH, calcium and other factors. There are limited data on elimination FGF23 from body, but renal failure causes significant increase of plasma C-terminal fragments. These fragments are cleared almost twice as slow as intact FGF23. FGF23 is not connected to membrane and therefore it acts like a hormone rather than a cell surface receptor. The primary target organs of FGF23 are the kidneys and parathyroid glands. The target organs for FGF23 are defined by the coexpression of the transmembrane protein αKlotho and FGF23 receptor (FGFR) and interactions between αKlotho and FGFR are necessary to mediate FGF23 signaling. The main source of αKlotho is the kidney and the amount and concentration of αKlotho progressively decreases with decreasing renal function. Both target organs play role in secondary hyperparathyroidism (sHPT), which is a common complication of patients with...
chronic kidney disease 13-16. In addition to pHPT and sHPT, diseases associated with abnormal FGF23 levels include X-linked hypophosphatemic rickets, autosomal dominant and autosomal recessive hypophosphatemic rickets, and tumor-induced oncogenic osteomalacia and others 10,17,18. Primary hyperparathyroidism is associated with hypophosphatemia and hyperphosphaturia, which correlates with elevated serum PTH concentrations with higher concentrations of calcium in both serum and urine and 1,25(OH)\textsubscript{2}D in serum 16.

The aim of the presented study was to investigate perioperative (intraoperative and postoperative) plasma iFGF23 and cFGF23 levels, to reveal possible differences in perioperative changes and to assess the correlations with markers of mineral, renal, and bone metabolism (PTH, inorganic phosphate, total calcium, eGFR creatinine, eGFR cystatin C, and P1NP) in patients with pHPT subjected to parathyroidectomy.

PATIENTS AND METHODS

Study involved 38 patients (31 females, aged from 24 to 77 years and 7 males, aged from 38 to 75 years) with primary hyperparathyroidism subjected to parathyroidectomy. The diameter of the adenoma ranged from 5 mm to 30 mm. Right-sided parathyroidectomy was performed in 17 patients (7 patients with up-side, 10 with down-side), left-sided parathyroidectomy was performed in 13 patients (1 patient with up-side, 10 patients with down-side, 2 patients with both sides), 3 patients had adenoma in the mediastinum and 5 patients underwent complete thyroidectomy. Struma nodosa and thyrotoxicosis occurred in 7 patients, hypothyserosis and type II diabetes mellitus occurred in 3 patients. One patient was previously subjected to unilateral nephrectomy due to the nephroblastoma. In three patients the second parathyroidectomy due to the adenoma was performed. Informed consent was obtained from all participants enrolled to the study. The blood samples were collected to K\textsubscript{3}-EDTA tubes. Plasma concentrations of C-terminal FGF23 (cFGF23) (Immutopics Inc) 19, intact FGF23
(iFGF23) (Immutopics Inc) \(^{20}\), inorganic phosphate, creatinine, cystatin C and P1NP were measured just before the incision, immediately (10 minutes) after parathyroid adenoma excision and on postoperative day 1. Plasma concentrations of PTH were measured only intraoperatively (just before the incision and 10 minutes after adenoma excision). Plasma PTH values on postoperative day 1 were not measured. Serum calcium levels were retrieved from medical notes.

Additional calculations of eGFR cystatin C – Grubb equation, eGFR creatinine -CKD-EPI, were performed. 37 patients had normal preoperative plasma creatinine levels ranged from 25 to 92 µmol/L, one patient who underwent nephrectomy due to the nephroblastoma had elevated plasma creatinine level (112.3 µmol/L) and slightly decreased eGFR (CKD-EPI) = 86 ml/min/1.73m\(^2\) (reference eGFR (CKD-EPI) values ≥ 90 ml/min/1.73m\(^2\)). Plasma cFGF23 and iFGF23 concentrations were measured using commercially available immunoassay ELISA kit (Immutopics, Inc. San Clemente, CA). The analytical parameters of the cFGF23 kit were: detection limit 1.5 RU/mL and working range 1.5 - 660 RU/mL (intra-assay CV = 1.4 - 2.4%, inter-assay CV = 2.4 - 4.7 %), reference interval 21.6 - 91 RU/mL \(^{21}\). The analytical parameters of the iFGF23 kit were: detection limit 1.5 pg/mL, working range 1.5 - 660 pg/mL (intra-assay CV = 2.0 - 4.1%, inter-assay CV = 3.5 - 9.1%) \(^{20}\), reference interval 11.7 – 48.6 pg/mL \(^{21}\). Commercial ELISA determinates two types of FGF 23. Antibodies of iFGF23 tests detect epitopes within the amino-terminal and the carboxyl-terminal portions. In the cFGF23 assay, antibodies detect 2 different epitopes in the karboxyl-terminal portion. Therefore, the cFGF23 assay measures both the intact molecule and the large carboxyl terminal fragment of human FGF23 \(^{22}\). The conversion factor between RU/mL [cFGF23 assay] and pg/mL [iFGF23 assay] is expressed as: [cFGF23 (RU/mL) = 2.1 x iFGF23 (pg/mL) - 14.0] \(^{23}\).
First ELISA is focused on full-length FGF23; intact FGF23 (32 kDa). A murine monoclonal antibody and an affinity purified goat polyclonal antibody have been selected to detect epitopes within the amino-terminal and carboxyl-terminal portions of FGF23. The monoclonal antibody is biotinylated for capture and the other antibody is conjugated with the enzyme horseradish peroxidase (HRP) for detection. Second ELISA is focused on carboxy-terminal FGF23 fragment (aminoacids 1 to 24). Two affinity purified goat polyclonal antibodies have been selected to detect epitopes within the carboxyl-terminal portion of FGF23. One antibody is biotinylated for capture and the other antibody is conjugated with the enzyme horseradish peroxidase (HRP) for detection.

Additional biomarkers (cystatin C, creatinine, and inorganic phosphate) were assayed by commercially used methods (immunoturbidimetry, enzymatic creatinase, and end point phosphomolybdate) on Advia 1800 Siemens biochemistry analyzer. Rapid 9 minute 3rd Generation Bointact PTH STAT assay (Cobas e601, Roche) was used to investigate plasma PTH levels. PTH reference range supplied by the manufacturer was 1.6 – 6.9 pmol/L. P1NP levels were measured by electrochemiluminescence immunoassay (Cobas e601, Roche). The study was approved by the Ethical Committee of Faculty Hospital Motol.

STATISTICAL ANALYSIS

The normality of the data distribution was tested by D’Agostino Pearson test. Differences between subgroups were tested for statistical significance by the nonparametric Mann-Whitney test. Value of P <0.05 was considered as statistically significant. Spearman correlation was calculated to evaluate the correlation between cFGF23, iFGF23 and other biomarkers. Statistical software MedCalc version: 18.02.01 (Oostende, Belgium) and GraphPad Prism version 8.02 (San Diego, CA) were used for statistical evaluation.

RESULTS
The concentrations of all biomarkers measured intra- and postoperatively in patients with pHPT are listed in Table 1. The plasma PTH levels were significantly decreased intraoperatively 10 minutes after surgical excision of the parathyroid adenoma (4.17 vs 13.10 pmol/L, P <0.0001), intraoperative levels of all other biomarkers did not change. The correlations of iFGF23, cFGF23 and PTH measured just before the incision were not significant. On postoperative day 1, inorganic phosphate values increased (1.03 mmol/L vs. 0.8 mmol/L, P = 0.0025, plasma inorganic phosphate reference values are 0.8-1.5 mmol/L), plasma cFGF23 concentrations decreased (22.23 vs 89.17 89.17 vs. 22.23 RU/mL, P <0.0001, Figure 2). Similarly, iFGF23 values also decreased postoperatively, but the postoperative values were lower than the detection limit of the kit (Figure 2, Table 1). The concentrations of iFGF23 and cFGF23 are not related to age and gender and did not differ between pre- and postmenopausal women. We found significant perioperative correlation between FGF23 and inorganic phosphate (cFGF23: Spearman r = -0.253, P = 0.0065; iFGF23: Spearman r = -0.245, P = 0.0085) (Figure 3), however, the intraoperative and postoperative correlations between FGF23 and inorganic phosphate were not significant.

FGF23 and eGFR (Cystatin C) measured just before the incision correlated significantly (cFGF23: Spearman r = -0.499, P = 0.0014; iFGF23: Spearman r = -0.413, P = 0.01) (Figure 4) but correlation between both iFGF23 and cFGF23 and eGFR (CKD-EPI) was not significant. The correlation between FGF23 and total calcium one day after adenoma excision (cFGF23: Spearman r = 0.598, P = 0.0008, iFGF23: Spearman r = 0.41, P = 0.02) was also significant. Patients were postoperatively supplemented by calcium.

DISCUSSION

Intraoperative changes of PTH
The most relevant information on parathyroid activity is given by the determination of plasma PTH concentration. We proved significantly decreased plasma PTH concentration 10 minutes after the parathyroidectomy compared to the values before the parathyroidectomy (4.17 vs. 13.10 pmol/L, P <0.0001, Mann Whitney test) (Table 1). The significant decrease in PTH concentration means successful removal of the adenoma. Successful parathyroidectomy was also confirmed by adjusting of calcium concentration 1 day after the surgery.

Perioperative changes of iFGF23 and cFGF23

The intraoperative cFGF23 and iFGF23 values were at the upper level or above the upper level of reference intervals, as is shown in figure 1. We found similar results in the available literature, both cFGF23 and iFGF23 were elevated in pHPT patients before parathyroidectomy. The plasma cFGF23 concentrations significantly decreased one day after the surgery compared to the preoperative (just before the incision) values (Figure 2). These findings correlated with the results of Kobayashi et al. Kobayashi et al. published time course of cFGF23 in five patients showing significant decrease 6 hours after parathyroidectomy. Plasma concentrations of iFGF23 showed more significant decrease, the concentrations of iFGF23 measured 1 day after the parathyroidectomy were even lower than the declared detection limit of the kit (1.5 pg/mL). The early perioperative changes of iFGF23 (changes until one day after parathyroidectomy) were not yet published. The steeper decrease in postoperative concentrations of iFGF23 is due to its shorter biological half-life (intact FGF23 has shorter half-life of 5 minutes, while cFGF23 has a half-life of 22-94 minutes). Even iFGF23 with its short half-life of 5 minutes did not show any changes 10 minutes post-excision versus pre-incision. Of note, the concordance between intact and C-terminal FGF23 acute changes is noteworthy, suggesting each could substitute for the other. The concordance also suggests that
the decline in iFGF23 following excision of the parathyroid adenoma was relatively slow compared to the longer half-life of cFGF23.

FGF23 and PTH correlation

Correlation between PTH and FGF23 just before adenoma incision was not significant. We could not determine the postoperative correlation between PTH and FGF23 because postoperative plasma PTH values were not measured. Current review showed that measuring of postoperative plasma PTH values could be supplied by the continuously monitored albumin adjusted serum calcium followed with clinical investigations including symptoms of hypercalcemia and presence of end organ diseases (renal stones, fragility fractures and osteoporosis) \(^{25}\). We could not evaluate the continuous monitoring calcium/albumin levels due to the fact that we assayed plasma samples and postoperative serum calcium levels were retrieved from medical notes. The data in Figure 2 show that the decrease iFGF23 and cFGF23 values does not occur intraoperatively, in contrast to the PTH values, which decrease immediately (10 minutes) after parathyroidectomy. PTH and iFGF23 have a similar half-life (PTH half-life is 3-4 minutes \(^{1}\)). Rapid intraoperative decrease in PTH levels against the much slower decline of PTH-stimulated circulating iFGF23 despite their similar half lives is contributed with the atrophy of non-adenomatous parts of the parathyroid gland due to the chronic dysregulated preoperative oversecretion of PTH by the adenoma in contrast to the chronically overstimulated, likely hyperplastic, revved up sites of iFGF23 production due to chronic overstimulation by chronically elevated levels of circulating PTH. Minutes after surgical excision of the hyperfunctioning PTH adenoma, suppressed PTH synthesis by the remaining parathyroid gland coupled with the short half-life of PTH act (synergistically) together to cause the very rapid decline in circulating PTH. In contrast, it takes longer to wind down FGF23 overproduction by hyperplastic sites of synthesis despite the sudden absence of
PTH-mediated stimulation arising from excision of the PTH producing adenoma, hence the slower decline in circulating iFGF23 levels. Regulation of FGF23 is complex and multifactorial with FGF23 affecting the metabolic processes of number important substances including hormones and factors and in turn being affected by these same moieties but not necessarily in a reciprocal manner which adds to the complexity. A case in point, relevant in this study is that FGF23 directly acts on the parathyroid glands to decrease PTH synthesis and secretion\(^{26}\). On the other hand, FGF23 synthesis is stimulated by PTH, phosphate, calcium, 1,25(OH)\(_2\)D and other factors\(^{1}\). Witteveen et al.\(^{3}\) reported significant relationship between PTH and FGF23 levels in pHPT patients and their results suggest that the increase of FGF23 levels in pHPT patients could be an adaptive mechanism to counteract the PTH-induced increase in 1,25(OH)\(_2\)D levels.

Correlation of cFGF23 and iFGF23 with glomerular filtration

The negative correlation of FGF23 with glomerular filtration is typical in patients with chronic kidney disease\(^{16,24,27,28}\). Although none of our patients enrolled in the study had significantly reduced glomerular filtration, we found significant negative correlation of cFGF23 and iFGF23 measured just before the parathyroidectomy with glomerular filtration estimated from cystatin C concentration (eGFR cystatin C)→cFGF23: Spearman \(r = -0.499\), \(P = 0.0014\), iFGF23: Spearman \(r = -0.413\), \(P = 0.01\). The correlation of both cFGF23 and iFGF23 with GFR creatinine estimated from CKD-EPI formula was not significant in our study. Similarly, Witteveen et al.\(^{3}\) did not find significant relationship between iFGF23 concentrations and glomerular filtration (estimated from MDRD formula) in pHPT patients and Yamashita et al.\(^{29}\) did not show significantly increased serum iFGF23 levels in pHPT patients with normal renal function characterized by the creatinine clearance \(\geq 70\) mL/min. The discrepancies in eGFR (creatinine) and eGFR (cystatin C) are related to the association of glomerular filtration with
the age as mentioned by Kang et al. We found in our study, that FGF23 values and creatinine estimated glomerular filtration (CKD-EPI) were not associated with age, however, the association of eGFR (cystatin C) with age was significant (r = 0.50, p<0.0001). This results indicate the higher sensitivity of cystatin C compared to creatinine in detecting renal function in patients with pHPT. Similar results show also Ermetici et al.

The role of FGF23 in maintaining calcium phosphate homeostasis

Hypercalcemia is an important diagnostic indicator of primary hyperparathyroidism. Medical records of our patients showed elevated serum calcium levels before parathyroidectomy (median = 2.71 mmol/L) with significant decrease to reference range next day after adenoma excision (median = 2.22 mmol/L, P < 0.0001) (Table 1). Postoperative decrease of total calcium correlated with the decrease of FGF23 values (cFGF23: Spearman r = 0.5982, P = 0.0008, iFGF23: Spearman r = 0.41, p = 0.02). Plasma inorganic phosphate levels were at the lower level of reference intervals before parathyroidectomy. It is well known, that FGF23 acts on the proximal tubule to inhibit sodium/phosphate cotransporters NaPi2a and NaPi2c and, consequently, renal phosphate reabsorption. FGF23 also inhibits expression of renal 1α-hydroxylase and stimulates expression of renal 24-hydroxylase leading to a decrease in serum 1,25(OH)₂D with a subsequent decrease in intestinal phosphate (and calcium) absorption resulting in a decrease in serum phosphate. On postoperative day 1, phosphate values increased (1.03 mmol/L vs. 0.8 mmol/L, P = 0.0025 (see Table 1). But no difference between cFGF23 and iFGF23 with respect to postoperative phosphate was noted in this study. The elevation of perioperative plasma phosphate correlated with the decrease of plasma FGF23 (cFGF23: Spearman r = -0.253, P = 0.0065, iFGF23: Spearman r = -0.245, P = 0.0085). Similarly, Yamashita et al. found negative correlation of iFGF23 with serum phosphate and 1,25(OH)₂D levels before the parathyroidectomy, and also observed positive correlation of
iFGF23 with serum calcium levels 6 days after the parathyroidectomy. On the contrary, Bilha et al. \(^{32}\) monitored patients with pHPT and D hypovitaminosis and showed that preoperative serum cFGF23 concentrations were within the normal range and remained unchanged one day postoperatively. Bilha et al. also mentioned that some patients followed prospectively for up to 12 months after surgery showed constant cFGF23 levels, despite PTH and Ca normalisation and vitamin D replenishment. Hassani et al. \(^{33}\) showed positive correlation of FGF23 with \(1,25(\text{OH})_2\text{D}\) preoperatively and postoperatively (24 hours and 1 week after the operation), they also did not prove significant correlations between FGF23, calcium, phosphate and PTH.

FGF23 and bone markers

A number of studies have focused on the association of FGF23 with bone metabolism \(^{3,27,28,34}\). We evaluated the relationship of cFGF23 and iFGF23 with P1NP as important biomarker of bone formation and we did not find significant correlation. Similar to our findings, Witteveen et al. \(^3\), did not proved significant relationship between FGF23 and P1NP (or between FGF23 and ALP or CTx) in patients with pHPT, nevertheless all bone turnover markers were significantly increased in their study. Preoperative P1NP values found in our study were in the upper region of the reference range, which correspond to increased bone turnover in patients with pHPT.

The main limitation of our study is the lack of postoperative PTH values and the absence of a control group of healthy people. The advantage of the presented study seems to be the determination of both iFGF23 and cFGF23 in the same cohort of patients. The early perioperative changes of iFGF23 (changes less than one day after parathyroidectomy) were not yet published. Indeed, all the cited studies determine either iFGF23 or cFGF23 in plasma or in serum. Despite the different half-lives the concordance between iFGF23 and cFGF23 acute changes is noteworthy in our study, suggesting each could substitute for the other. iFGF23 and cFGF23 also showed similar
correlations to other markers. Similarly, the study of Shimada et al. demonstrated that levels of bioactive FGF23 were well correlated with the levels of immunoreactive FGF23 measured using either the iFGF23 or the cFGF23 assay and both assays would reflex the same circulating moiety. On the other hand, the measurements of C-terminal FGF23 are often disturbed by the clinical iron deficiency, inflammation, the use of erythropoiesis stimulating agents. As such, in general, the use of cFGF23 should be discouraged and the use of iFGF23 should be prompted. Concentrations of cFGF23 and iFGF23 were increased in patients with pHPT and one day after parathyroidectomy they significantly decreased. Postoperative decrease of cFGF23 and iFGF23 was associated with the increase of inorganic phosphate. cFGF23 and iFGF23 did not change intraoperatively although PTH decrease significantly. cFGF23 and iFGF23 measured just before incision correlate with eGFR (Cystatin C). The investigation of cFGF23 and iFGF23 show similar results suggest that each could substitute for the other and both cFGF23 and iFGF23 are equally relevant in maintaining laboratory evaluation of patients with pHPT.

Acknowledgements

MF – Reviewing and editing clinical data, text revision and writing, LH- Writing and data curation, RP – Manuscript reviewing and language editing, supervision, MV – Methodology and data curation, JC – Editing and reviewing, KK – Original draft preparation, conceptualisation.

Funding

The research was supported by the project (Ministry of Health, Czech Republic) for conceptual development of research organization 00064203 (University Hospital Motol, Prague, Czech Republic).
Declaration of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

REFERENCES

14. Quarles LD: Role of FGF23 in vitamin D and phosphate metabolism: implications in
15. Quarles LD: A systems biology preview of the relationships between mineral and
Kakuta T., Fukagawa M.: Impact of parathyroidectomy on serum FGF23 and soluble Klotho
in hemodialysis patients with severe secondary hyperparathyroidism. J Clin Endocrinol
Relat Cancer 2011; 18: R53-77.
19. Human FGF-23 (C-Term) ELISA Kit 2nd Generation Enzyme-Linked ImmunoSorbent
Assay (ELISA) for the Determination of Human Fibroblast Growth Factor 23 Levels in
Plasma or Cell Culture Media.
20. Human FGF-23 (Intact) ELISA Kit 2nd Generation Enzyme-Linked ImmunoSorbent
Assay (ELISA) for the Quantitative Determination of Human Fibroblast Growth Factor 23
Levels in Plasma or Cell Culture Media.
51: 203-227.
22. Donate-Correa J, Muros de Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF:
Pathophysiological implications of fibroblast growth factor-23 and Klotho and their potential
A, Chudek J: C-Terminal to Intact Fibroblast Growth Factor 23 Ratio in Relation to Estimated
T., Ishimura E., Sugimoto T., et al: Regulation of plasma fibroblast growth factor 23 by

Figure 2 Legends

Results are expressed as median with interquartile range (IQR).

Dotted lines show upper and lower limit of reference interval.

Semi-dotted line show value of detection limit set at 1.5 pg/mL for iFGF23 and 1.5 RU/mL for cFGF23 respectively.
Table 1. The plasma concentrations of biomarkers measured intra- and post-operatively in patients with pHPT

<table>
<thead>
<tr>
<th></th>
<th>Intraoperative</th>
<th>Postoperative</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Just before the incision (n = 38)</td>
<td>10 minutes after excision (n = 38)</td>
<td>Next day after excision (n = 38)</td>
</tr>
<tr>
<td>cFGF23 (RU/mL)</td>
<td>89 (74.58 – 102.6)</td>
<td>88 (78.42 – 99.54)</td>
<td>22 (14.41 – 31.91)</td>
</tr>
<tr>
<td>iFGF23 (pg/mL)</td>
<td>57 (45.58 – 67.41)</td>
<td>57 (78.42 – 99.54)</td>
<td>Not detectable</td>
</tr>
<tr>
<td>Inorganic phosphate (mmol/L)</td>
<td>0.80 (0.69 – 0.93)</td>
<td>0.80 (0.73 – 0.91)</td>
<td>1.03 (0.91 - 1.26)</td>
</tr>
<tr>
<td>S-Ca (mmol/L)*</td>
<td>2.71 (2.61 – 2.82)</td>
<td>-</td>
<td>2.22 (2.15 – 2.34)</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>58.51 (54.81 – 62.11)</td>
<td>62.52 (50.16 – 72.38)</td>
<td>72.51 (62.33 – 75.51)</td>
</tr>
<tr>
<td>Cystatin C (mg/L)</td>
<td>1.01 (0.94 – 1.06)</td>
<td>0.97 (0.86 – 1.03)</td>
<td>1.06 (1.10 – 1.20)</td>
</tr>
<tr>
<td>P1NP (µg/L)</td>
<td>61.75 (54.43 – 78.84)</td>
<td>62.60 (49.47 – 73.27)</td>
<td>62.04 (54.92 – 67.71)</td>
</tr>
<tr>
<td>eGFR Cystatin C (ml/min/1.73m²)</td>
<td>83.29 (76.79 – 93.97)</td>
<td>89.16 (80.59 – 109.1)</td>
<td>76.79 (62.35 – 84.69)</td>
</tr>
<tr>
<td>eGFR Creatinine CKD-EPI (ml/min/1.73m²)</td>
<td>116.3 (101.4 – 143.6)</td>
<td>128.7 (103.32 – 136.6)</td>
<td>107.1 (89.8 – 136)</td>
</tr>
<tr>
<td>PTH (pmol/L)</td>
<td>13.10 (10.22 – 14.37)</td>
<td>4.17 (2.85 – 5.97)</td>
<td>-</td>
</tr>
</tbody>
</table>

Concentrations of biomarkers are expressed as median (95% confidence interval (CI) for the median).

*Serum Ca values were retrieved from medical notes.
Figure 1. The ELISA techniques used to detect intact and C-terminal FGF23 (adapted from Donate-Correa et al [13])

![Diagram showing ELISA techniques for detecting intact and C-terminal FGF23](image-url)
Figure 2. Perioperative changes of plasma FGF23 values in patients with pHPT

2a) cFGF23

![Graph showing perioperative changes of plasma FGF23 values. The graph indicates a statistically significant decrease in cFGF23 levels with a p-value of < 0.0001.](image-url)
2b) iFGF23

![Graph showing iFGF23 levels over time with P < 0.0001 significance.](image)

- Before excision
- 10 minutes after excision
- Next day after excision
Figure 3. Perioperative correlations of plasma FGF23 with inorganic phosphates

a) cFGF23

Spearman $r = -0.253$
$p = 0.0065$

b) iFGF23

Spearman $r = -0.245$
$p = 0.0085$
Figure 4. Preoperative (just before incision) correlations of plasma FGF23 with GFR(Cystatin C)

a) cFGF23

\[
\text{GFR CysC (ml/min/1.73m²)} \quad \text{cFGF23 (RU/mL)}
\]

Spearman \(r = -0.499 \)
\(p = 0.0014 \)

b) iFGF23

\[
\text{GFR CysC (ml/min/1.73m²)} \quad \text{iFGF23 (pg/mL)}
\]

Spearman \(r = -0.413 \)
\(p = 0.01 \)