RESEARCH

The avian chorioallantoic membrane as an alternative tool to study medullary thyroid cancer

Nassim Ghaffari-Tabrizi-Wizsy*, Christina Angelika Passegger*, Laura Nebel, Fabian Krismer, Gudrun Herzer-Schneidhofer, Gert Schwach and Roswitha Pfragner

Otto Loewi Research Center – Immunology and Pathophysiology, Medical University of Graz, Graz, Austria

Correspondence should be addressed to N Ghaffari-Tabrizi-Wizsy: nassim.ghaffari@medunigraz.at
*(N Ghaffari-Tabrizi-Wizsy and C A Passegger contributed equally to this work)

Abstract

Preclinical trials of medullary thyroid cancer (MTC) therapeutics require both in vitro and in vivo analyses. Human tumour xenografted rodent models, which are considered the ‘gold standard’ to study and validate the efficacy and toxicity of lead compounds before translation to clinical trials, are very expensive, subject to organismal variability and ethical controversies. The avian chorioallantoic membrane (CAM) assay provides an alternative versatile, cost-effective and ethically less objectionable short-term, in vivo model for reliable screening of drugs. In this work, we grafted two MTC cell lines and patient-derived MTC tumour samples onto the avian CAM and characterised the resulted tumours histologically and immunohistochemically. Our findings provide the evidence that the CAM assay is a suitable model for studying the pathophysiology of MTC and can even be used as in vivo system for drug testing.

Introduction

Medullary thyroid cancer (MTC) is a rare thyroid tumour arising from neural-crest-derived parafollicular thyroid C cells, accounting for about 5–8% of all thyroid cancers and may occur sporadic (70–80% of cases) or hereditary (20–30%) (1). In about 25% of cases, MTC is caused by inherited germline-activating mutations of the ‘rearranged during transfection’ (RET) proto-oncogene, which constitutively activates cellular signalling, resulting in persistent cell proliferation and MTC. Therefore, this oncogene represents a key player both in MTC pathogenesis in preclinical models and as molecular target for drugs inhibiting the action of pathogenic oncoproteins.

Mouse models are of fundamental importance to evaluate the efficacy of targeted therapy inhibiting oncoproteins. In addition to the murine models, other animal organisms for example, Drosophila, zebrafish and chick embryo have been used in the preclinical research on MTC (see 2 for review).

The avian chorioallantoic membrane assay serves as a short-term in vivo model, which can be easily used prior to costly, time-consuming and elaborate mouse models. The avian chorioallantoic membrane (CAM) assay has been utilised as a cancer model system for more than a century (3, 4, 5, 6, 7).

Wide ranges of tumours, including thyroid cancers, have been studied using CAM (8, 9, 10, 11, 12). Yalcin et al. showed that in the CAM, tetrac and tetrac NP inhibited tumour growth and tumour-associated angiogenesis of h-MTC cell line (13). We demonstrated the anti-tumourigenic effects of Shikonin on MTC-derived TT cell line grafted on CAM (8).

In this work, we show the applicability of CAM for MTC research more detailed. We grafted two MTC
cells lines (TT and OEE-III) as well as patient-derived MTC tissue samples onto the avian CAM, monitored their growth and morphologically characterised the resulting tumours.

Materials and methods

Cell culture

Human medullary thyroid cancer cell lines TT (obtained from the European Collection of Authenticated Cell Cultures (ECACC; Porton Down, Salisbury, UK) and OEE-III (established in our lab) \(^{(14)}\) were cultivated in a humidified incubator at 5% CO\(_2\) and 37°C in Ham’s F12 (BioWhittaker, Lonza) supplemented with 10% FBS foetal bovine serum (PAA) and 1% penicillin/streptomycin (Biochrom).

Patient and tumour samples

MTCs from two patients were used for this study, which were preserved in cultivating medium containing 10% DMSO and stored in liquid nitrogen for 20 years. Tissues were examined immunohistochemically for calcitonin, carcinoembryonic antigen and neuroendocrine markers (chromogranin A, synaptophysin) prior freezing. Patients were treated surgically without any adjuvant treatment. Written informed consent was obtained from all patients. The study was approved by the Ethical Committee of the Medical University of Graz (# 18-182 ex 06/07).

CAM xenografts

We performed the \(ex\ ovo\) CAM method according to Deryugina et al. \(^{(15)}\): Fertilised white Lohmann chicken eggs (from local provider) were incubated at 37°C and 60% humidity. The egg shells were cracked on day 3 of embryonic development and the embryos were incubated in a sterile dish for further application. On day 10 of embryonic development, onplants with \(1 \times 10^6\) TT or OEE-III cells, respectively, were resuspended in 10\(\mu\)L phosphate buffered saline (PBS) and mixed with an equal volume of Matrigel (BD Biosciences). Tumour tissue (2 mm pieces) were then grafted on the CAM of \(ex\ ovo\)-cultivated embryos using a silicon ring.
of 5 mm diameter as a barrier. Tumour formation was allowed to happen and development of cell xenografts was monitored by photo-documentation (Olympus SZX16) for 3–6 days (Fig. 1). Tumours with the CAM were then excised, photographed and tumour area was quantified using ImageJ software. Samples were fixed in 4% paraformaldehyde (overnight, room temperature) followed by FFPE-tissue embedding.

In the EU the CAM assay is not declared as an animal experiment by law and even fulfils the 3R criteria.
(replacement, reduction, refinement), and therefore, does not require an ethical approval.

Histology

Tissue sections of 5 µm were stained with haematoxylin/eosin or analysed immunohistochemically according to the protocol (Mouse- and Rabbit-specific HRP/DAB Detection IHC Kit, Abcam). Shortly, sections were de-paraffinised, rehydrated and upon blocking of unspecific binding, incubated with primary antibodies for 1h at room temperature. Detection of target antigens was performed via streptavidin-peroxidase-mediated colour reaction of AEC or DAB. Following primary antibodies were used: Ki-67 (Dako, clone M7240, 1:80), calcitonin (Novus, clone SP17, 1:10) synaptophysin (Pierce Thermo Scientific, 1:80),
chromogranin A (Pierce Thermo Scientific, 1:500) and carcinoembryonic antigen (Dako, clone II-7, 1:1000). Images were taken on an Olympus BX53.

Results and discussion

In vivo observation

Both cell lines (TT and OEE-III) formed solid and vascularised tumours within 3 days when grafted on CAM (Fig. 2A). TT and OEE-III revealed similar and reproducible (N=6 each) growth patterns. The tumour area (mm²) was determined by ImageJ (Fig. 2B).

The tumour samples used in this study have been stored in liquid nitrogen for two decades, yet, they still were alive and able to grow on CAM (Fig. 3A).

Histological and immunohistological analysis

At day 3 post transplantation, TT and OEE-III tumours were excised, fixed, paraffin embedded and stained for haematoxylin and eosin. Invasion of MTC cells from the primary onplant site into the surrounding CAM tissue could be observed for both cell lines. Within the tumour, TT and OEE-III cells on CAM appeared small and round shaped alike the MTC tissues shown in pathology textbooks and papers (Fig. 4) (16). Using immunohistochemistry method (IHC) with Ki-67, we found TT and OEE-III cells to be mitotic active; in our recent paper we demonstrated that treatment of TT cells grown on CAM led to decrease of Ki67 cells by inducing apoptosis, showing the suitability of the method for drug screening (8). Moreover, TT and OEE-III cells grown on CAM retained to express specific markers for MTC and neuroendocrine tumours, for example calcitonin, chromogranin A, synaptophysin (p-38) and carcinoembryonic antigen (Fig. 4i, ii, iii, iv, v, vi, vii, viii, ix, x, xi and xii).

Patient-derived MTC tissue samples were grafted for 6 days on CAM and then processed for histological analysis (Fig. 3B). The samples revealed to stay alive and were connate to the CAM without visible growth; however, they continue to express neuroendocrine-specific markers synaptophysin and chromogranin A (Fig. 3C and D).

Discussion

The avian chorioallantoic membrane facilitates the development of characteristic MTC tumours and provides a supporting microenvironment with blood vessels and stromal tissue. Different to cell culture-based assays, this technique allows detecting invasion and angiogenesis. Other advantages are the lack of immune system and the possibility to easily study therapeutic effects on tumour growth and expression of signalling molecules. A further advantage is that an expensive animal house is not necessary. CAM assay can be performed in a laboratory room equipped with incubators.

The major drawbacks of the method are that the observation time is limited to about 3–7 days following implantation and that in spite of the immature immune system of the chick embryo nonspecific inflammatory reaction may occur if experiments are extended after 15 days of incubation (15, 17, 18, 19). Therefore, this technique can be used only for short-term in vivo studies; nonetheless, it can serve to evaluate results obtained in cell culture for new therapeutics for MTC.

Conclusion

We conclude that CAM assay is a reliable alternative to rodent models, in terms of 3R (replacement, reduction, refinement) at least prior to work with mouse system (Fig. 5). Therefore, CAM assay could serve as a preclinical tool for seeking drugs against MTC and might help to increase the power and speed of the development of new drugs.
Finally, the experimental tumour model on the CAM can be adapted for other malignant thyroid tumours such as papillary and follicular thyroid carcinomas.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author contribution statement
N GT W, C A P, L N, G H S and F K performed the lab work, N GT W designed the research study, R P and G S provided OEE-III cell line. N GT W and L N analysed the data. N GT W and C A P wrote the paper.

Acknowledgments
The authors thank SFL Technologies (Stallhofen, Austria) for Olympus microscopes used in this study.

References
1 Schlumberger M, Carlomagno F, Baudin E, Bidart JM & Santoro M. New therapeutic approaches to treat medullary thyroid carcinoma. Nature Clinical Practice Endocrinology and Metabolism 2008 4 22–32. (https://doi.org/10.1038/ncpendmet0717)
5 Murphy JB. Transplantability of tissues to the embryo of foreign species: its bearing on questions of tissue specificity and tumor immunity. Journal of Experimental Medicine 1913 17 482–493. (https://doi.org/10.1084/jem.17.4.482)
9 Jia W, Gao XJ, Zhang ZD, Yang ZX & Zhang G. S100A4 silencing suppresses proliferation, angiogenesis and invasion of thyroid cancer cells through downregulation of MMP-9 and VEGF. European Review for Medical and Pharmacological Sciences 2013 17 1495–1508.
10 Kalhori V, Magnusson M, Asghar MY, Pulli I & Tornquist K. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. Endocrine-Related Cancer 2016 23 457–468. (https://doi.org/10.1038/jerc.2016.050)
16 Sheniz KD. Histopathology of C cells and medullary thyroid carcinoma. Recent Results in Cancer Research 2015 204 41–60.

Received in final form 14 January 2019
Accepted 26 March 2019
Accepted Preprint published online 26 March 2019