Androgenic potential of human fetal adrenals at the end of the first trimester

I Savchuk¹, M L Morvan², J P Antignac², K Gemzell-Danielsson³, B Le Bizec², O Söder¹ and K Svechnikov¹

¹Department of Women’s and Children’s Health, Pediatric Endocrinology Unit, Karolinska Institute & University Hospital, Stockholm, Sweden
²LUNAM Université, École Nationale Vétérinaire, Agroalimentaire et de l’Alimentation, Nantes-Atlantique (Oniris), Laboratoire d’Étude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Nantes, France
³Department of Obstetrics and Gynecology, Karolinska Institute & University Hospital, Stockholm, Sweden

Abstract

The onset of steroidogenesis in human fetal adrenal glands (HFA) during the first trimester is poorly investigated. An unresolved question is the capacity of the HFA to produce potent androgen DHT via conventional and/or the backdoor pathway(s) at the end of first trimester, when androgen-responsive organs are developed. Our aim was to explore steroidogenesis and the expression of steroidogenic enzymes and transcription factors in HFA at gestational weeks (GW) 9–12 with focus on their androgenic potential. Steroids in the HFA were analyzed by gas chromatography/mass spectrometry. The expression of steroidogenic enzymes and transcription factors in the HFA at GW9–12 was investigated by qPCR, automated Western blotting and immunohistochemistry. We demonstrated that during GW9–12 HFA produced steroids of the \( \Delta^5 \), \( \Delta^4 \) and the backdoor pathways of the biosynthesis of DHT, though the latter was limited to production of 17α-OH-dihydroprogesterone, androsterone and androstenedione without further conversion to DHT. The only androgens identified in the HFA were testosterone and androsterone, a precursor in the biosynthesis of DHT. We also observed higher levels of CYP17A1 but low expression of 3βHSD2 at GW11–12 in the HFA. Elevated levels of CYP17A1 were associated with an increased expression of SF-1 and GATA-6. Altogether, our data demonstrate that of those steroids analyzed, the only potent androgen directly produced by the HFA at GW9–12 was testosterone. The onset of steroidogenesis in the HFA is a complex process that is regulated by the coordinated action of related transcription factors.

Introduction

Steroid hormones produced by the human fetal adrenal glands (HFA) have been proposed to regulate intrauterine homeostasis and the maturation of certain organs required for extrauterine life (1). In this case, appropriate development of and hormonal production by the HFA are critical for normal fetal maturation and survival.

The HFA develop from the intermediate mesoderm and by GW7 have acquired two distinct zones, the inner
fetal (FZ) and outer definitive zone (DZ) (2). In parallel, differentiation of the female and male external genitalia begins at GW7 and is completed by GW10, during which period, an overabundance of androgens can lead to abnormal male-directed development referred to as virilization (3). Deficient activity of cytochrome P450 21-hydroxylase (CYP21A2) is one defect in adrenocortical steroidogenesis well known to result in overproduction of androgens by the HFA in response to ACTH, a disorder referred to as congenital adrenal hyperplasia (4).

It has been reported that the HFA has the potential to produce testosterone from androstenediene by action of 17β-HSD5 (5), similar to that observed in the adult adrenals, where this enzyme has been found to be expressed in zona reticularis (6). It is also known that testosterone can be further converted to 5α-dihydrotestosterone (DHT) in the target tissue such as the external genital tissue (7), and this metabolic process from cholesterol to DHT by means of testosterone is called the conventional pathway. In addition to this the frontdoor route, it has been demonstrated that 17-hydroxyprogesterone (17-OHP) can be converted to DHT in the testes of pouch young of the tammar wallaby and immature postnatal testes of rodents via an alternative ‘backdoor’ pathway that bypasses the conventional intermediates androstenedione and testosterone (8, 9, 10). In this pathway, progesterone and 17OH-progesterone are subsequently converted to dihydroprogesterone (DHP), allopregnanolone, 17-OH allopregnanolone, androsterone, androstanediol and DHT by the action of 5α-reductase 1 (SRD5A1), CYP17A1, the family of 3α-HSD1–4 (AKR1C1–4), 17βHSD3 and 17βHSD6 (HSD17B3, HSD17B6) (9, 11). Recent studies have reported the presence of a backdoor pathway of DHT synthesis in newborn untreated patients with 21-hydroxylase deficiency (21-OHD), suggesting that the HFA could contribute to virilization of the female fetuses with 21-OHD via production of this potent androgen (12). In line with this, the HFA have been reported to express abundantly AKR1C1, AKR1C3 and AKR1C4 (13), suggesting that synthesis of DHT via the backdoor pathway is probable but not proven in physiological conditions by the HFA. Furthermore, recent study has proposed that DHT can be produced from androstenediene either through 5α-androstenedione (i.e. androstenediene, 5α-androstanediene, DHT) or through 5α-androstenedione, androsterone and androstanediol (i.e. androstenedione, 5α-androstenedione, androsterone, androstanediol, DHT) in the human prostate (14). Given that the HFA produce androstenediene and express many steroidogenic enzymes required for this pathway (5, 13, 15), such a novel pathway for the biosynthesis of DHT cannot be excluded.

One unresolved question in this context is the capacity of the HFA to produce potent androgen DHT via conventional and/or the backdoor pathway(s) at the end of the first trimester, when androgen-responsive organs are developed. Furthermore, due to limited access to appropriate material for research, little is presently known about the potential relationship between the expression of steroidogenic enzymes and of associated transcription factors by the HFA at early stages of the gland development.

Accordingly, in the present study, we carried out a comprehensive analysis of the profile of steroids produced by the HFA at the end of the first trimester. To extend our knowledge concerning the onset of steroidogenic activity of the HFA, we also explored expression of the corresponding steroidogenic enzymes and associated transcription factors during GW9–12. We found that at the end of the first trimester, the HFA have potential to produce testosterone and 5α-reduced precursors of DHT biosynthesis but not this androgen itself. Moreover, the ontogenic expression profiles of the various steroidogenic enzymes differ and are regulated by appropriate transcription factors.

Materials and methods

Ethical approval

These experimental procedures were approved by the Regional Ethics Committee of Stockholm (EPN dnr 2014/1022-32).

Human fetal adrenal collection

HFA were obtained from aborted fetuses in connection with elective termination of pregnancy during the first trimester (9–12 weeks of gestation) at Karolinska University Hospital, Stockholm, Sweden. Fetuses were transported to the laboratory within 30 min of delivery. Gestational age was validated by ultrasound (crown-rump length) and measuring fetal limb length to obtain more precise information about the age of the fetuses as described previously (16). Average value of each gestational week (GW) of the fetuses was as follows: GW9.3 ± 0.04 (n = 9), GW10.3 ± 0.06 (n = 10), GW11.2 ± 0.05 (n = 14) and GW12.0 ± 0.0 (n = 5). The fetuses were dissected under a binocular microscope in ice-cold PBS and the HFA were removed aseptically. The HFA were isolated from

http://www.endocrineconnections.org
DOI: 10.1530/EC-17-0085 © 2017 The authors
Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
individual fetuses within few minutes and immediately snap-frozen in dry ice and stored at −85°C during one–two weeks before performing analysis of steroidogenic genes expression, steroid levels assay and Western blotting or fixed overnight in neutral-buffered formaldehyde, transferred to 70% ethanol and processed for histology. Adrenals from 38 fetuses were divided into two groups (GW9–10 and GW11–12) and the sexes were pooled.

Isolation of RNA and generation of cDNA

Total RNA was extracted with the RNeasy Mini Kit (74104, Qiagen), in accordance with the manufacturer’s instructions. This RNA was then pretreated with DNase (RNase-free DNase Set, Qiagen), again as specified by the manufacturer and then quantified by spectrophotometry (BioPhotometer, Hamburg, Germany). The RNA was maintained at −80°C until further processing with the iScript cDNA Synthesis Kit (Bio-Rad Laboratories) employing the manufacturer’s protocol.

Analysis of gene expression by qPCR

The samples were prepared for qPCR utilizing iQ SYBR Green Supermix (170-8882, Bio-Rad Laboratories) and after determining the optimal conditions by running a temperature gradient, cycles run at 95°C for 10s, 60–62°C for 45s, 95°C for 60s and 55°C for 60s, followed by performance of a melting curve from 55°C to 95°C in steps of 0.5°C and then maintenance at 4°C (iCycler iQ, Bio-Rad Laboratories). To compensate for possible variations in RNA concentration, all values were normalized to the level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA, the product of a housekeeping gene. To monitor efficiency, negative control (RT-) was added to each qPCR assay. The \(2^{-\Delta\Delta Ct}\) method was applied to calculate fold changes in gene expression. An overview of the primers and running conditions employed are presented in Table 1.

Automated Western blotting

All reagents for Wes-automated Western blotting were prepared and used in accordance with the manufacturer’s recommendations (ProteinSimple, San Jose, CA, USA; www.proteinsimple.com/simon.html). The HFA were lysed in CelLytic cell reagent (Sigma) and the lysates diluted with sample buffer to a protein concentration of 0.3 µg in 4 µL were mixed together with the 5x Master Mix (DTT, fluorescence labeled marker, SDS) in a ratio 5:1 and then incubated at 95°C for 5 min. The samples, the biotin-labeled protein ladder, blocking reagent, primary antibodies, HRP-conjugated secondary antibodies, chemiluminescent substrate and stacking matrices were loaded into individual wells of the sample plate. Antibodies were diluted with antibody diluent buffer. After plate loading, the separation electrophoresis and immunodetection steps took place in the capillary system and were fully automated in Wes instrument. Briefly, the capillaries first fill with separation matrix for 200 s, and then stacking matrix for 15 s and finally sample for 9 s with vacuum injection. Separation was then performed at 375 V for 25 min in each capillary. After separation, the capillaries were exposed to UV light, activating the proprietary linking chemistry and locking the separated protein to the capillary wall. Subsequently, the matrix was removed and washed with washing buffer for three times. The capillaries were then blocked with antibody diluent to prevent non-specific binding, and target proteins were immunoprobed with primary antibodies, followed by HRP-conjugated secondary antibodies.

The 30-min incubations with primary antibodies against STAR, CYP17A1, GAPDH and CYP11A1 and 60-min incubations with SF-1, 3βHSD2, DAX1 and GATA6 antisera were followed by incubation with HRP-conjugated goat anti-rabbit secondary antibody for 30 min. The detail information about the antibodies used is presented in Table 2.

Luminol and peroxide (ProteinSimple) were then added to generate chemiluminescence. The digital images obtained were analyzed with the Compass software (ProteinSimple). Band densities were normalized against GAPDH and the ontogenetic expression of steroidogenic enzymes and related transcription factors were expressed as percentages of the corresponding values of GW9 values. The lane views of the expression of relevant steroidogenic enzymes and system software-generated electropherograms are shown in Supplementary Fig. 1 (see section on supplementary data given at the end of this article).

GC–MS/MS analysis of steroids

Steroids from the HFA at GW9–10 (\(n=5\)) and GW11–12 (\(n=7\)) were extracted twice with diethyl ether and prepared for analysis as described earlier (17). Briefly, tissue samples (from 0.5 to 15 mg) were ground in the presence of methanol/water 80:20 (v/v). The resulting...
mash was transferred in glass tubes, and the methanol layer was evaporated under \( N_2 \) stream. Then, an enzymatic deconjugation was performed for hydrolysis of glucuronide and sulfate forms by \( \beta \)-glucuronidase and arylsulfatase, respectively. The deconjugation was operated overnight at 37°C. All total (free + deconjugated) steroids were then extracted twice with diethyl ether. A liquid/liquid partitioning with pentane was used to separate androgens/progestogens from estrogens, and the two resulting fractions were finally submitted to a further purification through silica (SiOH) solid-phase extraction cartridges.

Detection and quantification of androgens and estrogens were performed on a Scion 436 gas chromatograph coupled to a Scion TQ triple quadrupole mass spectrometer (Bruker, Fremont, CA, USA) as described

### Table 1 qPCR primer sequences and running conditions, bp-base pair.

<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequence</th>
<th>Prod. length (bp)</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>F: 5′-gaaggtgaaggtcggagtcaac-3′&lt;br&gt;R: 5′-cagagttaaaacgcagctctgt-3′</td>
<td>71</td>
<td>55–65</td>
</tr>
<tr>
<td>CYP11A1</td>
<td>F: 5′-ctcagtccttgtaaagggc-3′&lt;br&gt;R: 5′-ctcagtccttgtaaagggc-3′</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>CYP17A1</td>
<td>F: 5′-gcttctgcgttaagagggtgc-3′&lt;br&gt;R: 5′-gcttctgcgttaagagggtgc-3′</td>
<td>111</td>
<td>60</td>
</tr>
<tr>
<td>GATA4</td>
<td>F: 5′-gcggaaagaggggatccaaa-3′&lt;br&gt;R: 5′-ggcgcgagctgctggtgttt-3′</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>SF-1</td>
<td>F: 5′-ggcttctgcgttaagagggtgc-3′&lt;br&gt;R: 5′-ggcttctgcgttaagagggtgc-3′</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>GATA6</td>
<td>F: 5′-agaagcgcgtgccttcatc-3′&lt;br&gt;R: 5′-agaagcgcgtgccttcatc-3′</td>
<td>158</td>
<td>60</td>
</tr>
<tr>
<td>CEBPB</td>
<td>F: 5′-gcagctgcctgctttttcc-3′&lt;br&gt;R: 5′-gcagctgcctgctttttcc-3′</td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>MRAP</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>243</td>
<td>60</td>
</tr>
<tr>
<td>SULT2A1</td>
<td>F: 5′-tcagttccagggaaccccaag-3′&lt;br&gt;R: 5′-tcagttccagggaaccccaag-3′</td>
<td>248</td>
<td>60</td>
</tr>
<tr>
<td>AKR1C4</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>185</td>
<td>60</td>
</tr>
<tr>
<td>AKR1D1</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>126</td>
<td>60</td>
</tr>
<tr>
<td>SP1</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>MC2R</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>232</td>
<td>60</td>
</tr>
<tr>
<td>HSD17B3</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>253</td>
<td>60</td>
</tr>
<tr>
<td>STAR</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>163</td>
<td>60</td>
</tr>
<tr>
<td>AKR1C3</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>183</td>
<td>60</td>
</tr>
<tr>
<td>DAX-1</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>102</td>
<td>60</td>
</tr>
<tr>
<td>COUP-TFII</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>131</td>
<td>60</td>
</tr>
<tr>
<td>LRH-1</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>71</td>
<td>60</td>
</tr>
<tr>
<td>HSD3B2</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>207</td>
<td>60</td>
</tr>
<tr>
<td>POR</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>132</td>
<td>60</td>
</tr>
<tr>
<td>CYB5A</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>157</td>
<td>60</td>
</tr>
<tr>
<td>AKR1C2</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>183</td>
<td>60</td>
</tr>
<tr>
<td>SRD5A1</td>
<td>F: 5′-tctctgcttcgtcttcgct-3′&lt;br&gt;R: 5′-tctctgcttcgtcttcgct-3′</td>
<td>175</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 2  List of antibodies used in the study.

<table>
<thead>
<tr>
<th>Peptide/protein target</th>
<th>Name of antibody</th>
<th>Manufacturer, catalog no. or name of source</th>
<th>Species raised in monoclonal or polyclonal</th>
<th>Dilution used</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF-1</td>
<td>NR5A1</td>
<td>NovusBiologial, NBP-152823</td>
<td>Rabbit polyclonal</td>
<td>1:50</td>
</tr>
<tr>
<td>DAX1</td>
<td>DAX1/NR081</td>
<td>NovusBiologial, NBP-152832</td>
<td>Rabbit polyclonal</td>
<td>1:50</td>
</tr>
<tr>
<td>CYP17A1</td>
<td>Anti-cytochrome P450 17A1 antibody (EPR6293)</td>
<td>Abcam, ab125022</td>
<td>Rabbit monoclonal</td>
<td>1:50</td>
</tr>
<tr>
<td>CYP11A1</td>
<td>Anti-CYP11A1 antibody</td>
<td>Abcam, ab175408</td>
<td>Rabbit polyclonal</td>
<td>1:300</td>
</tr>
<tr>
<td>GATA-6</td>
<td>GATA-6-(H-92)</td>
<td>Santa Cruz, sc-9055</td>
<td>Rabbit polyclonal</td>
<td>1:25</td>
</tr>
<tr>
<td>3β-HSD</td>
<td>3β-HSD-(H-143)</td>
<td>Santa Cruz, sc-28206</td>
<td>Rabbit polyclonal</td>
<td>1:25</td>
</tr>
<tr>
<td>STAR</td>
<td>STAR-(FL-285)</td>
<td>Santa Cruz, sc-25806</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>GAPDH</td>
<td>GAPDH-(FL-335)</td>
<td>Santa Cruz, sc-20658</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>5αr1</td>
<td>5αRED1-(H-105)</td>
<td>R&amp;D Systems, MAB-7678</td>
<td>Mouse monoclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>AKR1C3</td>
<td>Human Aldo-keto Reductase 1C3/AKR1C3</td>
<td>Thermo Fisher Scientific, PA5-28963</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>5βr1</td>
<td>AKR1D1</td>
<td>Abcam, ab170613</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>AKR1C1/AKR1C2</td>
<td>Anti-AKR1C1/AKR1C2 antibody –C-terminal</td>
<td>Abcam, ab170613</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
</tbody>
</table>

Immunohistochemical analysis

Paraffin-embedded fetal adrenal tissue was cut to a thickness of 5 µm and mounted on microscope slides (P/N10143352, Superfrost Plus, Thermo Scientific) and placed at 60°C for 40 min in the oven. Tissue sections were dewaxed with xylene (P/N 02080, HistoLab, Gothenburg, Sweden) for 20 min and then rehydrated in graded ethanol (99.6, 96 and 70%). Antigen retrieval in 0.01 M citrate buffer (pH 6.0) for 20 min in a water bath was used for all slides.

Samples were incubated with 3% H2O2 in 96% methanol for 10 min at RT for non-specific endogenous peroxidase blocking. After washing with PBS with or without 0.01% Tween 20 (P/N P1379, Sigma Aldrich), the sections were treated with a mixture of 3% goat serum and 1% bovine serum albumin (BSA) in PBS for 60 min at RT to avoid non-specific binding. Slides were subsequently incubated with primary mouse monoclonal antibody to 17βHSD5 and rabbit polyclonal antibodies against AKR1C1/AKR1C2, 5βR1 (AKR1D1) and 5αR1 (Table 2) or unspecific IgGs (for negative control) dissolved in 3% goat serum in PBS overnight at 4°C. After washing with PBS and 0.01% Tween 20, the slides were incubated with biotinylated secondary antibody (ab64256, Abcam), and then with avidin–biotin–peroxidase complex prepared using Vectastain ABC kit (PK-6100, Vector Laboratories, Burlingame, CA, USA) for 60 min at RT. Finally, the slides were stained with DAB (SK-4105, Vector Laboratories) for 20–40 s at RT, washed twice with PBS and 0.01% Tween 20, incubated with primary mouse monoclonal antibody to 17βHSD5 and rabbit polyclonal antibodies against AKR1C1/AKR1C2, 5βR1 (AKR1D1) and 5αR1 (Table 2) or unspecific IgGs (for negative control) dissolved in 3% goat serum in PBS overnight at 4°C. After washing with PBS and 0.01% Tween 20, the slides were incubated with biotinylated secondary antibody (ab64256, Abcam), and then with avidin–biotin–peroxidase complex prepared using Vectastain ABC kit (PK-6100, Vector Laboratories, Burlingame, CA, USA) for 60 min at RT. Finally, the slides were stained with DAB (SK-4105, Vector Laboratories) for 20–40 s at RT, washed twice with H2O2, counterstained with Hämalaun solution (Merck), rinsed for five min with running tap water, dehydrated with gradually increasing concentrations of ethanol, cleared with xylene and mounted with cover glass. IgG-negative sections exposed to non-immune rabbit and mouse serum in the absence of primary antibody were included in all immunohistochemistry runs and showed no positive immunostaining.

Statistical analyses

Differences between values were analyzed for statistical significance with Student’s t-test for pairwise comparison and by the one-way analysis of variance (ANOVA) for multi comparison followed by Student–Newman–Keuls analysis or Dunn’s analysis if the normality test failed.

http://www.endocrineconnections.org
DOI: 10.1530/EC-17-0085
© 2017 The authors
Published by Bioscientifica Ltd

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
using the SigmaStat (v 11.00) package (SPSS). \( P<0.05 \) was considered to be statistically significant.

**Results**

The level of steroids produced by HFA at the end of first trimester

We observed that the HFA at the end of the first trimester produced substantial amount of steroids of \( \Delta^5 \) and \( \Delta^4 \) pathways and several \( 5\alpha \)-and \( 5\beta \)-reduced metabolites of DHEA and androstenedione (e.g. androstanedione, epiandrosterone, etiocholanolone) as well as some precursors of DHT biosynthesis via the backdoor pathway (e.g. 17OH-DHP and androsterone), but DHT itself was not detected in the HFA at GW9–12 (Fig. 1). The only androgens identified in the HFA were testosterone, which was found in the form of \( 17\alpha \)- and \( 17\beta \)-testosterone and androsterone, a precursor in the biosynthesis of DHT. We also found significant attenuation of the production of reduced steroids, androstanedione and etiocholanolone (by 78 and 92\%, \( P<0.001, P<0.01 \), respectively) by the HFA at GW11–12 compared to GW9–10 (Fig. 1).

Ontogeny of steroidogenic enzyme expression in the HFA at the end of the first trimester

Upon exploring the ontogeny of the expression of steroidogenic enzymes and of the ACTH receptor (MC2R) in the HFA at the end of the first trimester as an indication of steroidogenic potential, we found higher level of MC2R mRNA at GW11–12 then at GW9–10 (by 2.9-fold, \( P<0.05 \)), but the expression of its accessory protein MRAP was similar at both ages (Fig. 2A), indicating ongoing differentiation. Similarly, the levels of mRNA encoding steroidogenic genes StAR, CYP11A1 and SULT2A1 were significantly higher in the HFA at GW11–12 then at GW9–10 (Fig. 2A). We also observed that the HFA highly expressed CYP17A1 and genes coding P450 oxidoreductase (POR) and microsomal cytochrome \( P_4 \) (CYB5A) (Fig. 2B), the accessory proteins that support the catalytic activity of CYP17A1.

At the protein level, expression of CYP17A1 was upregulated at GW11–12 compared to GW9–10, while the level of \( 3\beta\)HSD2 protein peaked at GW10 and was later reduced at GW11 (Fig. 3A). Immunohistochemical analysis of cross sections of the HFA revealed expression of several androgen-metabolizing enzymes such as \( 5\alpha\)R, \( 5\beta\)R, AKR1C1/AKR1C2 and AKR1C3 (Fig. 3B). This observation agrees well with our finding of several steroidogenic products (e.g. 17OHDP, androsterone and etiocholanolone) as a result of the activities of these enzymes.

The observed differences in the temporal profiles of the expression of steroidogenic enzymes by the HFA suggest a link between the onset of steroidogenesis and the expression of certain transcription factors.

Expression of transcription factors by the HFA during GW9–12

To test this suggestion, we characterized the expression of transcription factors involved in both positive and negative regulation of steroidogenic gene expression.

Figure 1
The tissue levels (ng/g) of steroids in the HFA at the end of the first trimester. Concentrations of pregnenolone (5P), 17-OH pregnenolone (17-OHPS), progesterone (P4), 17-OH progesterone (17-OHP4), DHEA, androstenedione (A), 17\( \alpha \)-testosterone (17\( \alpha \)-T), 17\( \alpha \)-testosterone (17\( \alpha \)-T), androstenediol, androsterone, 17\( \alpha \)-OH-dihydroprogesterone (17OHDP), 5-androstene-3\( \beta \),17\( \alpha \)-diol (epi5-diol), epiandrosterone, androstenedione, etiocholanolone, DHT and 17\( \alpha \)-estradiol in the HFA were measured by GC–MS/MS as described in the ‘Materials and methods’ section. The values shown are means ± s.d. for five and seven HFA isolated from individual fetuses at GW9–10 and GW11–12, respectively. **\( P<0.01 \), ***\( P<0.001 \) compared to GW9–10. ND, not detectable.
Figure 2
Levels of mRNAs encoding steroidogenic genes in the HFA during GW9–12. The mRNA levels were normalized to GAPDH as a housekeeping gene. The values presented are means ± s.e. for eight and six HFA at GW9–10 and GW11–12, respectively. *P < 0.05 compared to GW9–10.
We observed that the level of mRNA encoding the transcription factor COUP-TF2 declined significantly in the HFA at GW11–12 and no significant differences in the levels of mRNA encoding the other transcription factors examined were detected in the HFA at GW9–12 (Fig. 4A). However, at the protein level, expression of SF-1 and GATA-6 was significantly upregulated during GW10–12 and GW10–11, while expression of DAX-1 was slightly, but significantly attenuated by GW10 (Fig. 4B).

**Discussion**

In the present study, we analyzed the steroidogenic machinery of the HFA during a critical phase of the first trimester, when androgen-dependent sexual dimorphism of the external genitalia is established. To our knowledge, this is the first detailed analysis of steroid production by the HFA at the end of the first trimester employing highly sensitive GC–MS/MS technique and linking this production to the levels of steroidogenic enzymes and related transcription factors. We demonstrated that during GW9–12, HFA produced steroids of the Δ⁵, Δ⁴ and the backdoor pathways of the biosynthesis of DHT, though the latter was limited to production of 17α-OH-dihydroprogesterone, androsterone and androstenedione without further conversion to DHT. The only androgens identified in the HFA were testosterone and androsterone, a precursor in the biosynthesis of DHT.

Our study has demonstrated that the capacity of the HFA to synthesize testosterone was limited and only less than 1% of androstenedione was converted to the androgen. This finding agrees well with the study reported that organ culture of the HFA at GW8 can produce low levels of testosterone in unstimulated and activator-stimulated conditions (5). It should also be noted that the abundance of DHEA vs androstenedione and androstenediol compared to testosterone in the HFA is likely associated with low expression of 3βHSD2 reported previously (5, 19) and confirmed in the present study.

We also observed for the first time that HFA express 5α-reductase 1 (SRD5A1), whose activity is critical for the operation of the backdoor pathway (8, 20, 21). Similarly, detection of two forms of testosterone,
Figure 4
Levels of transcription factors involved in the regulation of steroidogenic enzyme expression in the HFA during GW9–12. (A) The mRNA and (B) protein levels were measured by qPCR and Wes-automated Western blotting, respectively. The values presented are means ± s.e. for the same number of samples as indicated in Figs 2 and 3. (A) *P < 0.05 compared to GW9–10, (B) *P < 0.05, **P < 0.01, ***P < 0.001 compared to GW9.

17α- and 17β-testosterone may indicate that the activities of 17αHSD, 17βHSD3 and 17βHSD5 were present in the HFA to convert androstenedione to both forms of testosterone as reported previously (5, 13, 22). Recently, several studies have reported that 11-oxygenated metabolite of testosterone, 11-ketotestosterone (11KT) can be produced by the human adrenals (23), and it has capacity similar to testosterone to bind to the human androgenic receptor (hAR) and regulates AR-dependent gene expression (23, 24, 25, 26), suggesting that androgenic potential of HFA at the end of first trimester cannot be limited to testosterone action only.

In the present study, we observed that the HFA at GW9–12 had capacity to produce androstanedione and androsterone, the precursors in the biosynthesis of DHT (8, 9). However, further conversion of these steroids into DHT was blocked in the HFA apparently due to inability of 17βHSD3 to convert androstenedione to DHT and androsterone to androstanediol, which were not detectable in all samples (data not shown). The observed restriction of the HFA to produce potent androgen DHT at the end of the first trimester may play an important role in protection of the developing female external genitalia from deleterious effects of androgens and to avoid their masculinization. However, evidence for the presence of the backdoor pathway in newborn untreated patients with 21-hydroxylase deficiency (21-OHD) suggests that the HFA could contribute to DHT biosynthesis in patients with 21-OHD (12).

It has been reported that androsterone can be synthesized from two steroid precursors, androstanedione and 17α-OH-allopregnanolone by reductive activity of 3αHSD and the 17–20 lyase activity of CYP17A1, respectively (8, 20). We did not detect 17α-OH-allopregnanolone in the HFA but taking into account that this steroid is the most efficient substrate for the 17–20 lyase activity (27), one can suggest that this intermediate steroid was rapidly and effectively
converted to androsterone by the action of CYP17A1 in the HFA.

Our observation that the expression of MC2R (the receptor for ACTH) in the HFA was elevated during final two weeks of the first trimester may indicate of active differentiation and maturation of the human fetal adrenocortical cells. These findings agree well with an earlier report that the human fetal adrenal cortex is responsive to ACTH and produces corticosteroids and DHEA as early as GW8 (5, 28), strongly indicating functional activity of MC2R at early stages of the HFA development.

In the present study, we found that the major steroid produced by the HFA was DHEA, which was associated with high levels of expression of CYP17A1, its accessory proteins, P450 oxidoreductase (POR) and CYB5A. In addition, low level of expression of 3β-HSD2 observed in the HFA (5, 19) may also contribute to excessive production of DHEA. To our knowledge, this is the first time expression of POR and CYB5A by the HFA at the end of the first trimester has been reported. The catalytic activity of CYP17A1 requires a supply of electrons from NADPH via POR (29, 30) and its 17,20-lyase activity is enhanced significantly by microsomal CYB5A (29, 31), which supports interactions with POR allosterically (32). Accordingly, our present findings indicate that the CYP17A1-POR-CYB5 complex is fully functional already at early stages of the HFA development. CYP17A1 is expressed exclusively in the fetal zone (FZ), which produces large amounts of DHEA starting from GW7–8 (33), but the biological role of this steroid in the development and maturation of fetal organs during the first trimester is not yet known. In mice, DHEA has been reported to modulate the growth of embryonic neocortical neurons and may thereby play a crucial role in organizing the neocortex (34). Whether this steroid performs a similar function in the human fetus remains to be determined. DHEA has also been shown to be a ligand for many hepatic nuclear receptors and G-protein-coupled receptors (35).

Further, we also demonstrated the elevated expression of SULT2A1 in the HFA at GW11–12 compared to GW9–10, strongly suggesting that this enzyme plays an important role in the regulation of the availability of pregnenolone, 17OH-pregnenolone and DHEA for androgen production by the HFA (36, 37). In the human adrenals, SULT2A1 converts pregnenolone, 17α-hydroxy pregnenolone, DHEA, androsterone and androstenediol to their respective sulfated products (36, 37), which are no longer available as substrates for corresponding enzymes (38).

Our current characterization of the expression of steroidogenic enzymes and related transcription factors by the HFA at the end of the first trimester revealed a partial ontogenetical relationship between the levels of transcription factors that promotes steroidogenic gene expression (e.g. SF-1 and GATA6) and of CYP11A1 and CYP17A1. It has been reported that GATA-6 can work in concert with SF-1 to maximize expression of the enzymes involved in the synthesis of adrenal androgens (39) and can control transcription of CYP17A1 both in a human adrenocortical cell line (40) and virilizing carcinomas (41) as well as is involved in regulating CYPSA transcription (42). Thus, GATA-6 appears to play several roles in connection with development, differentiation and regulation of steroidogenesis in the adrenal cortex (41). Similarly, we observed elevated expression of 3β-HSD2 in association with high levels of SF-1 and GATA-6 proteins in the HFA at GW10, while the significant reduction in the level of 3β-HSD2 at GW11 was not correlated with the decline in the expression of these steroidogenic factors. It was previously demonstrated that nerve growth factor IB (NGFI-B), an orphan nuclear receptor, can regulate the expression of 3β-HSD2 in the HFA during the end of the first trimester (5), indicating that SF-1 and GATA-6 may not be primary transcriptional regulators of the expression of this steroidogenic enzyme.

Altogether, our current study demonstrates that the early onset of steroidogenesis in the HFA is characterized by production of steroids of the Δ4, Δ5 and the backdoor pathways of the biosynthesis of DHT, though the latter was limited to production of 17α-OH-dihydroprogesterone, androsterone and androstenedione without further conversion to DHT. Of those steroids analyzed in the present study, the only potent androgen directly produced by the HFA was testosterone. The similar profiles of the expression of steroidogenic cytochromes and their regulatory transcription factors (e.g. SF-1 and GATA-6) may indicate that these regulatory proteins play a key role in the onset of steroidogenesis in the HFA at a very early stage in their development.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/EC-17-0085.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
I Savchuk et al.

Androgens production by human fetal adrenals

358–359 | 6:358

References


23 Pretorius E, Africander DJ, Vlok M, Perkins MS, Quanston J & Storbeck KH. 11-Ketotestosterone and 11-ketodihydrotestosterone in castration resistant prostate cancer: potential androgens which can no longer be ignored. PLoS ONE 2016 11 e0159867. (doi:10.1371/journal. pone.0159867)


40 Fluck CE & Miller WL. GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. Molecular Endocrinology 2004 18 1144–1157. (doi:10.1210/me.2003-0342)


Received in final form 31 May 2017
Accepted 6 June 2017
Accepted Preprint published online 7 June 2017