Browse

You are looking at 51 - 60 of 1,462 items

Sherwin Criseno Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
School of Nursing and Midwifery, Institute of Clinical Sciences, University of Birmingham, UK

Search for other papers by Sherwin Criseno in
Google Scholar
PubMed
Close
,
Helena Gleeson Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
Andrew A Toogood Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Andrew A Toogood in
Google Scholar
PubMed
Close
,
Neil Gittoes Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Neil Gittoes in
Google Scholar
PubMed
Close
,
Anne Topping School of Nursing and Midwifery, Institute of Clinical Sciences, University of Birmingham, UK

Search for other papers by Anne Topping in
Google Scholar
PubMed
Close
, and
Niki Karavitaki Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Niki Karavitaki in
Google Scholar
PubMed
Close

Objective

We conducted a survey of UK endocrine clinicians between June 2022 and August 2022 to understand current practices regarding GH treatment discontinuation in adults with growth hormone deficiency.

Design and methods

Using Survey Monkey®, a web-based multiple-choice questionnaire was disseminated to the UK Society for Endocrinology membership. It consisted of 15 questions on demographics, number of patients receiving GH and current practice on GH treatment discontinuation.

Results

In total, 102 endocrine clinicians completed the survey. Of these, 65 respondents (33 endocrinologists and 32 specialist nurses) indicated active involvement in managing patients with growth hormone deficiency. In total, 27.7% of clinicians were routinely offering a trial of GH discontinuation to adults receiving long-term GH therapy. Only 6% had a clinical guideline to direct such practice. In total, 29.2% stated that GH discontinuation should be routinely offered as an option to patients on long-term treatment, whilst 60% were not clearly in favour or against this approach but stated that it should probably be considered, and 9.2% were against. During the GH withdrawal period, most clinicians monitor signs and symptoms (75.4%), measure IGF-1 (84.6%), and complete a quality-of-life assessment (89.2%).

Conclusion

The practice of offering a trial of GH discontinuation in growth hormone deficiency adults on long-term GH therapy is highly variable, reflecting the lack of high-quality evidence. Around a quarter of clinicians offer GH withdrawal for a number of reasons, but only a few have a local clinical guidance. A further 60% of clinicians stated they would probably consider such an approach. Methodologically sound studies underpinning the development of safe and cost-effective guidance are needed.

Significance statement

In this UK survey of endocrine clinicians managing adults with growth hormone deficiency on long-term GH therapy, we explored for the first-time current practice and views on offering GH treatment discontinuation. In total, 27.7% of clinicians were routinely offering this option for a variety of reasons. Only 6% have local clinical guideline available to direct their practice on this. The majority of clinicians (60%), were not clearly in favour or against this approach but indicated it should probably be considered. In the absence of robust evidence on consequences of GH withdrawal, clinicians proposed monitoring of various clinical, biochemical and quality-of-life parameters during the period of discontinuation. Methodologically sound studies that will underpin the development of a safe, cost-effective guidance are needed.

Open access
Xiaonan Guo Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Xiaonan Guo in
Google Scholar
PubMed
Close
,
Wenjing Hu Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Wenjing Hu in
Google Scholar
PubMed
Close
,
Xiaorui Lyu Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Xiaorui Lyu in
Google Scholar
PubMed
Close
,
Hanyuan Xu Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Hanyuan Xu in
Google Scholar
PubMed
Close
,
Huijuan Zhu Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Huijuan Zhu in
Google Scholar
PubMed
Close
,
Hui Pan Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Hui Pan in
Google Scholar
PubMed
Close
,
Linjie Wang Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Linjie Wang in
Google Scholar
PubMed
Close
,
Hongbo Yang Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Hongbo Yang in
Google Scholar
PubMed
Close
, and
Fengying Gong Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Fengying Gong in
Google Scholar
PubMed
Close

Objective

Patients with growth hormone deficiency (GHD) with inadequate growth hormone levels are often correlated with nonalcoholic fatty liver disease (NAFLD). However, the potential mechanism of how GHD influences liver function remains obscure. In the present study, we aim to perform hepatic metabolomics in Lewis dwarf rats, which were the standard congenital isolated GH-deficient rat, to evaluate the characterizations of hepatic metabolic profiles and explore their relations with liver functions.

Methods

Lewis dwarf homozygous (dw/dw) rats at 37 weeks (five females and five males), and Lewis dwarf heterozygous (dw/+) rats at 37 weeks (five females and five males) were analyzed in our study. Body lengths and weights, liver weights, serum alanine transaminase (ALT), and serum aspartate transaminase (AST) were measured. ELISA and RT-qPCR were used to assess IGF-1 levels in serum and liver, respectively. The non-targeted metabolomics was performed in the livers of dw/+ and dw/dw rats. Differential metabolites were selected according to the coefficient of variation (CV), variable importance in the projection (VIP) > 1, and P < 0.05. Hierarchical clustering of differential metabolites was conducted, and the KEGG database was used for metabolic pathway analysis.

Results

The body weights, body lengths, liver weights, and IGF-1 levels in the serum and liver of dw/dw rats were significantly decreased compared with dw/+ rats. Dw/dw rats exhibited more obvious hepatic steatosis accompanied by higher serum ALT and AST levels. Hepatic metabolomics showed that a total of 88 differential metabolites in positive ion mode, and 51 metabolites in negative ion mode were identified. Among them, lysophosphatidylcholine (LPC) 16:2, LPC 18:3, LPC 22:6, fatty acid esters of hydroxy fatty acids (FAHFA)18:1 were significantly decreased, while palmitoyl acid, dehydrocholic acid, and 7-ketolithocholic acid were significantly increased in dw/dw rats compared with dw/+ rats. These seven differential metabolites were significantly associated with phenotypes of rats. Finally, KEGG pathway analysis showed that the arginine and proline metabolism pathway and bile secretion pathway were mainly clustered.

Conclusion

Lewis dw/dw rats with congenital isolated growth hormone deficiency (IGHD) showed liver steatosis and abnormal liver function, which could be potentially associated with the distinctive hepatic metabolic profiles.

Open access
Svjatoslavs Kistkins Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Svjatoslavs Kistkins in
Google Scholar
PubMed
Close
,
Othmar Moser Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany

Search for other papers by Othmar Moser in
Google Scholar
PubMed
Close
,
Vitālijs Ankudovičs Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Vitālijs Ankudovičs in
Google Scholar
PubMed
Close
,
Dmitrijs Blizņuks Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia

Search for other papers by Dmitrijs Blizņuks in
Google Scholar
PubMed
Close
,
Timurs Mihailovs Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia

Search for other papers by Timurs Mihailovs in
Google Scholar
PubMed
Close
,
Sergejs Lobanovs Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Sergejs Lobanovs in
Google Scholar
PubMed
Close
,
Harald Sourij Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria

Search for other papers by Harald Sourij in
Google Scholar
PubMed
Close
,
Andreas F H Pfeiffer Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany

Search for other papers by Andreas F H Pfeiffer in
Google Scholar
PubMed
Close
, and
Valdis Pīrāgs Pauls Stradiņš Clinical University Hospital, Riga, Latvia
Faculty of Medicine, University of Latvia, Riga, Latvia

Search for other papers by Valdis Pīrāgs in
Google Scholar
PubMed
Close

The increasing prevalence of ‘diabesity’, a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of ‘anti-diabesity’ treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.

Open access
Maria Houborg Petersen Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
Department of Clinical Research, University of Southern Denmark, Odense, Denmark

Search for other papers by Maria Houborg Petersen in
Google Scholar
PubMed
Close
,
Jacob Volmer Stidsen Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark

Search for other papers by Jacob Volmer Stidsen in
Google Scholar
PubMed
Close
,
Martin Eisemann de Almeida Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

Search for other papers by Martin Eisemann de Almeida in
Google Scholar
PubMed
Close
,
Emil Kleis Wentorf Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

Search for other papers by Emil Kleis Wentorf in
Google Scholar
PubMed
Close
,
Kurt Jensen Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

Search for other papers by Kurt Jensen in
Google Scholar
PubMed
Close
,
Niels Ørtenblad Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

Search for other papers by Niels Ørtenblad in
Google Scholar
PubMed
Close
, and
Kurt Højlund Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
Department of Clinical Research, University of Southern Denmark, Odense, Denmark

Search for other papers by Kurt Højlund in
Google Scholar
PubMed
Close

Aim

We investigated whether a high-intensity interval training (HIIT) protocol could restore beta-cell function in type 2 diabetes compared with sedentary obese and lean individuals.

Materials and methods

In patients with type 2 diabetes, and age-matched, glucose-tolerant obese and lean controls, we examined the effect of 8 weeks of supervised HIIT combining rowing and cycling on the acute (first-phase) and second-phase insulin responses, beta-cell function adjusted for insulin sensitivity (disposition index), and serum free fatty acid (FFA) levels using the Botnia clamp (1-h IVGTT followed by 3-h hyperinsulinemic–euglycemic clamp).

Results

At baseline, patients with type 2 diabetes had reduced insulin sensitivity (~40%), acute insulin secretion (~13-fold), and disposition index (>35-fold), whereas insulin-suppressed serum FFA was higher (⁓2.5-fold) compared with controls (all P < 0.05). The HIIT protocol increased insulin sensitivity in all groups (all P < 0.01). In patients with type 2 diabetes, this was accompanied by a large (>200%) but variable improvement in the disposition index (P < 0.05). Whereas insulin sensitivity improved to the degree seen in controls at baseline, the disposition index remained markedly lower in patients with type 2 diabetes after HIIT (all P < 0.001). In controls, HIIT increased the disposition index by ~20–30% (all P < 0.05). In all groups, the second-phase insulin responses and insulin-suppressed FFA levels were reduced in response to HIIT (all P < 0.05). No group differences were seen in these HIIT-induced responses.

Conclusion

HIIT combining rowing and cycling induced a large but variable increase in beta-cell function adjusted for insulin sensitivity in type 2 diabetes, but the disposition index remained severely impaired compared to controls, suggesting that this defect is less reversible in response to exercise training than insulin resistance.

Trial registration

ClinicalTrials.gov (NCT03500016).

Open access
Huiyuan Zhai Department of Pharmacy, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Huiyuan Zhai in
Google Scholar
PubMed
Close
,
Dongxu Wang Department of Geriatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Dongxu Wang in
Google Scholar
PubMed
Close
,
Yong Wang Department of Pharmacy, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Yong Wang in
Google Scholar
PubMed
Close
,
Hongwei Gu Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Hongwei Gu in
Google Scholar
PubMed
Close
,
Juan Jv Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Juan Jv in
Google Scholar
PubMed
Close
,
Liangliang Yuan Department of Pharmacy, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Liangliang Yuan in
Google Scholar
PubMed
Close
,
Chao Wang Department of Pharmacy, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Chao Wang in
Google Scholar
PubMed
Close
, and
Leiyao Chen Department of Pharmacy, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Leiyao Chen in
Google Scholar
PubMed
Close

Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1β, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.

Open access
Xiao-Shan Huang Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Xiao-Shan Huang in
Google Scholar
PubMed
Close
,
Ning Dai Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Ning Dai in
Google Scholar
PubMed
Close
,
Jian-Xia Xu Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Jian-Xia Xu in
Google Scholar
PubMed
Close
,
Jun-Yi Xiang Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Jun-Yi Xiang in
Google Scholar
PubMed
Close
,
Xiao-Zhong Zheng Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Xiao-Zhong Zheng in
Google Scholar
PubMed
Close
,
Tian-Yu Ke Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Tian-Yu Ke in
Google Scholar
PubMed
Close
,
Lin-Ying Ma Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Lin-Ying Ma in
Google Scholar
PubMed
Close
,
Qi-Hao Shi Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Qi-Hao Shi in
Google Scholar
PubMed
Close
, and
Shu-Feng Fan Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Shu-Feng Fan in
Google Scholar
PubMed
Close

Objective

Hashimoto’s thyroiditis is an inflammatory disease, and research suggests that a low-carbohydrate diet may have potential anti-inflammatory effects. This study aims to utilize Dixon-T2-weighted imaging (WI) sequence for a semi-quantitative assessment of the impact of a low-carbohydrate diet on the degree of thyroid inflammation in patients with Hashimoto’s thyroiditis.

Methods

Forty patients with Hashimoto’s thyroiditis were recruited for this study and randomly divided into two groups: one with a normal diet and the other with a low-carbohydrate diet. Antibodies against thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) were measured for all participants. Additionally, thyroid water content was semi-quantitatively measured using Dixon-T2WI. The same tests and measurements were repeated for all participants after 6 months.

Results

After 6 months of a low-carbohydrate diet, patients with Hashimoto’s thyroiditis showed a significant reduction in thyroid water content (94.84 ± 1.57% vs 93.07 ± 2.05%, P < 0.05). Concurrently, a decrease was observed in levels of TPOAb and TgAb (TPOAb: 211.30 (92.63–614.62) vs 89.45 (15.9–215.67); TgAb: 17.05 (1.47–81.64) vs 4.1 (0.51–19.42), P < 0.05). In contrast, there were no significant differences in thyroid water content or TPOAb and TgAb levels for patients with Hashimoto’s thyroiditis following a normal diet after 6 months (P < 0.05).

Conclusion

Dixon-T2WI can quantitatively assess the degree of thyroid inflammation in patients with Hashimoto’s thyroiditis. Following a low-carbohydrate diet intervention, there is a significant reduction in thyroid water content and a decrease in levels of TPOAb and TgAb. These results suggest that a low-carbohydrate diet may help alleviate inflammation in patients with Hashimoto’s thyroiditis.

Open access
Lu Yang Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Lu Yang in
Google Scholar
PubMed
Close
,
Xingguo Jing Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Xingguo Jing in
Google Scholar
PubMed
Close
,
Hua Pang Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Hua Pang in
Google Scholar
PubMed
Close
,
Lili Guan Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Lili Guan in
Google Scholar
PubMed
Close
, and
Mengdan Li Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Mengdan Li in
Google Scholar
PubMed
Close

In this review, we discuss the definition, prevalence, and etiology of sporadic multiglandular disease (MGD), with an emphasis on its preoperative and intraoperative predictors. Primary hyperparathyroidism (PHPT) is the third-most common endocrine disorder, and multiglandular parathyroid disease (MGD) is a cause of PHPT. Hereditary MGD can be definitively diagnosed with detailed family history and genetic testing, whereas sporadic MGD presents a greater challenge in clinical practice, and parathyroidectomy for MGD is associated with a higher risk of surgical failure than single gland disease (SGD). Therefore, it is crucial to be able to predict the presence of sporadic MGD in a timely manner, either preoperatively or intraoperatively. Various predictive methods cannot accurately identify all cases of sporadic MGD, but they can greatly optimize the management of MGD diagnosis and treatment and optimize the cure rate. Future research will urge us to investigate more integrative predictive models as well as increase our understanding of MGD pathogenesis.

Open access
Jonathan Hazlehurst Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Search for other papers by Jonathan Hazlehurst in
Google Scholar
PubMed
Close
,
Bernard Khoo Endocrinology, Division of Medicine, University College London, London, UK

Search for other papers by Bernard Khoo in
Google Scholar
PubMed
Close
,
Carolina Brito Lobato Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Medicine, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark

Search for other papers by Carolina Brito Lobato in
Google Scholar
PubMed
Close
,
Ibiyemi Ilesanmi Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK

Search for other papers by Ibiyemi Ilesanmi in
Google Scholar
PubMed
Close
,
Sally Abbott Department of Dietetics, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK

Search for other papers by Sally Abbott in
Google Scholar
PubMed
Close
,
Tin Chan Faculty of Medicine, Chinese University of Hong Kong, Hong Kong

Search for other papers by Tin Chan in
Google Scholar
PubMed
Close
,
Sanesh Pillai Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by Sanesh Pillai in
Google Scholar
PubMed
Close
,
Kate Maslin School of Nursing and Midwifery, University of Plymouth, Plymouth, UK

Search for other papers by Kate Maslin in
Google Scholar
PubMed
Close
,
Sanjay Purkayastha Brunel University, London, UK
Imperial College Healthcare NHS Trust, St Mary’s Hospital, London, UK

Search for other papers by Sanjay Purkayastha in
Google Scholar
PubMed
Close
,
Barbara McGowan Endocrinology, Guys’ and St Thomas’s NHS Foundation Trust, London, UK

Search for other papers by Barbara McGowan in
Google Scholar
PubMed
Close
,
Rob Andrews University of Exeter Medical School, Exeter, UK

Search for other papers by Rob Andrews in
Google Scholar
PubMed
Close
,
Eveleigh Nicholson Portsmouth Hospitals University NHS Trust, Portsmouth, UK

Search for other papers by Eveleigh Nicholson in
Google Scholar
PubMed
Close
,
Katherine McCullough Royal Surrey County Hospital, Guildford, UK

Search for other papers by Katherine McCullough in
Google Scholar
PubMed
Close
,
Lorraine Albon University Hospitals Sussex NHS Foundation Trust, Worthing, UK

Search for other papers by Lorraine Albon in
Google Scholar
PubMed
Close
,
Rachel Batterham Endocrinology, Division of Medicine, University College London, London, UK

Search for other papers by Rachel Batterham in
Google Scholar
PubMed
Close
,
Georgios K Dimitriadis King's College Hospital NHS Foundation Trust, London, UK

Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
Close
,
Shareen Forbes BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

Search for other papers by Shareen Forbes in
Google Scholar
PubMed
Close
,
Gavin Bewick School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK

Search for other papers by Gavin Bewick in
Google Scholar
PubMed
Close
, and
Tricia M-M Tan Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK

Search for other papers by Tricia M-M Tan in
Google Scholar
PubMed
Close

Post-bariatric hypoglycaemia (PBH) is typically a post-prandial hypoglycaemia occurring about 2–4 h after eating in individuals who have undergone bariatric surgery. PBH develops relatively late after surgery and often after discharge from post-surgical follow-up by bariatric teams, leading to variability in diagnosis and management in non-specialist centres.

Aim

The overall aim was to improve and standardise clinical practice in the diagnosis and management of PBH. The objectives were: (1) to undertake an up-to-date review of the current literature; (2) to formulate practical and evidence-based guidance regarding the diagnosis and treatment of PBH; (3) to recommend future avenues for research in this condition.

Method

A scoping review was undertaken after an extensive literature search. A consensus on the guidance and confidence in the recommendations was reached by the steering group authors prior to review by key stakeholders.

Outcome

We make pragmatic recommendations for the practical diagnosis and management of PBH, including criteria for diagnosis and recognition, as well as recommendations for research areas that should be explored.

Plain English summary

Post-bariatric hypoglycaemia (PBH) is a condition that commonly affects people who have undergone weight loss surgery. In this condition, people develop low blood sugar occurring about 2–4 h after meals, leading to debilitating symptoms such as hunger, sweating, anxiety, palpitations and even blackouts and fainting. PBH is becoming more common as weight loss surgery is being taken up by more people to help with their weight and to help with diabetes. The condition often develops after the patient has been discharged from follow-up after their surgery, which can lead to inconsistent diagnosis and treatment in non-specialist healthcare centres. The lack of clear information and evidence in the existing scientific literature further contributes to the variation in care. To address this problem, the Society for Endocrinology has created new guidelines to help healthcare professionals accurately diagnose and manage this condition. The guidelines were developed with input from dietitians, surgeons and doctors specialising in weight loss, and hormone specialists.

Open access
Teresa Kraus Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Teresa Kraus in
Google Scholar
PubMed
Close
,
Natalia Shengelia-de Lange Division of Nuclear Medicine, Tbilisi State Medical University, Tbilisi, Georgia

Search for other papers by Natalia Shengelia-de Lange in
Google Scholar
PubMed
Close
,
Holger Einspieler Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Holger Einspieler in
Google Scholar
PubMed
Close
,
Marcus Hacker Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Marcus Hacker in
Google Scholar
PubMed
Close
,
Alexander Haug Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Alexander Haug in
Google Scholar
PubMed
Close
,
Elisabeth Kretschmer-Chott Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Elisabeth Kretschmer-Chott in
Google Scholar
PubMed
Close
, and
Georgios Karanikas Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Georgios Karanikas in
Google Scholar
PubMed
Close

Background

The most important part of the follow-up of differentiated thyroid carcinoma (DTC) is the measurement of serum thyroglobulin (Tg). An increase of Tg levels indicates likely tumor recurrence. According to the guidelines of the European Society of Medical Oncology (ESMO), the follow-up should consist of serum Tg assays and a neck ultrasound, while the American Thyroid Association (ATA) recommends serum Tg assays, neck ultrasounds, and a diagnostic radioiodine whole-body scan (WBS) if non-stimulated Tg is greater than 10 ng/mL or if Tg is rising. This study questions the necessity of a diagnostic WBS in patients with low stimulated Tg levels during the initial follow-up.

Design

This study is a retrospective data analysis.

Methods

The data of 185 patients, who were in regular treatment and aftercare between 2015 and 2018 at the Department of Nuclear Medicine in Vienna, as well as the data of 185 patients who were treated in Tbilisi between 2015 and 2019, were analyzed.

Results

There was a highly significant relationship between low stimulated Tg levels (<0.5 ng/mL) and the outcome of the diagnostic WBS at the first follow-up (χ 2 = 14.7, P < 0.001). In total, 31 out of 370 patients (8.4%) had positive findings in the diagnostic WBS. Seventy-five of 370 patients (19.74%) had stimulated Tg levels >0.5 ng/mL.

Conclusion

Our data suggest that the first follow-up, 4–12 months after the initial therapy of DTC, including the measurement of basal and stimulated Tg levels and Tg antibody levels, does not mandate a diagnostic WBS on all patients.

Significance statement

In this study, we examined the still commonly used routine diagnostic radioiodine whole-body scan in the first follow-up of patients with differentiated thyroid carcinoma. We questioned the necessity of the scan in patients with low stimulated thyroglobulin levels. Therefore, we combined retrospective data from the University Hospital in Vienna and in Tbilisi to analyze 370 patients. We were able to demostrate a highly significant relationship between low stimulated thyroglobulin levels (<0.5 ng/mL) and the outcome of the diagnostic scan at the first follow-up (χ = 14.7, P < 0.001).

Open access
Yunyi Ding Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Yunyi Ding in
Google Scholar
PubMed
Close
,
Siyao Lv Department of Gastroenterology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, China

Search for other papers by Siyao Lv in
Google Scholar
PubMed
Close
,
Ruijie Xie Division of Clinical Epidemiology and Aging Research, University of Heidelberg, Heidelberg, Germany

Search for other papers by Ruijie Xie in
Google Scholar
PubMed
Close
,
Wei Ye Department of Gastroenterology, Hangzhou TCM Hospital, Hangzhou, China

Search for other papers by Wei Ye in
Google Scholar
PubMed
Close
,
Yichen Luo School of Mechanical Engineering, Zhejiang University, Hangzhou, China

Search for other papers by Yichen Luo in
Google Scholar
PubMed
Close
, and
Yayu Li Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China

Search for other papers by Yayu Li in
Google Scholar
PubMed
Close

Objective

The aim of this study was to investigate the relationship between weight-adjusted-waist index (WWI) and diabetic kidney disease in individuals afflicted with type 2 diabetes.

Methods

Comprehensive data were ascertained from the National Health and Nutrition Examination Survey in 2013–March 2020. Weighted univariate, multivariate logistic regression models, subgroup analyses and tests for interaction were performed. Additionally, we employed smooth curve fitting to assess linear correlations and the threshold effects were calculated by applying a binary linear regression model. Breakpoints are identified by a model with maximum likelihood ratio and a two-step recursive approach. Receiver operating characteristic curve (ROC) along with the area under the curve (AUC) value predict the capability of WWI and body mass index for diabetic kidney disease.

Results

A total of 10,661 individuals diagnosed with type 2 diabetes were included, and the overall prevalence of diabetic kidney disease was 20.74%. WWI exhibited a positive correlation with the likelihood of diabetic kidney disease in type 2 diabetes patients (OR: 1.17, 95% CI: 1.03–1.33). The results of subgroup analysis showed significant interaction for gender (P < 0.05). Among female patients, U-shaped correlations were observed with a breakpoint at 11.48. Additionally, weight-adjusted waist index (AUC = 0.664) proved to be a more effective predictor of diabetic kidney disease compared to body mass index (AUC = 0.555).

Conclusion

In patients with type 2 diabetes, increased weight-adjusted-waist index is implicated with an increased risk of diabetic kidney disease. WWI can be used as a new anthropometric index to predict diabetic kidney disease, and its predictive ability is stronger than body mass index.

Open access