Browse

You are looking at 1 - 10 of 772 items for

Open access

Jana Ernst, Katharina Gert, Frank Bernhard Kraus, Ulrike Elisabeth Rolle-Kampczyk, Martin Wabitsch, Faramarz Dehghani and Kristina Schaedlich

The rapid increase of obesity during the last decades and its future prospects are alarming. Besides the general discussed causes of obesity, the ‘Developmental Origins of Health and Disease’ (DOHaD) hypothesis received more attention in recent years. This hypothesis postulates an adverse influence during early development that programs the unborn child for metabolic dysfunctions later in life. Childhood obesity – an as much increasing problem – can be predisposed by maternal overweight and diabetes. Both, obesity and hyperinsulinemia are major causes of female hyperandrogenemia. As predicted by the DOHaD hypothesis and shown in animal models, developmental androgen excess can lead to metabolic abnormalities in offspring. In this study, we investigated, if androgen exposure adversely affects the adipogenic differentiation of preadipocytes and the endocrine function of adult adipocytes. The human SGBS preadipocyte model was used to affirm the de novo biosynthesis of steroid hormones under normal adipogenesis conditions. Normal adipogenesis was paralleled by an increase of corticosteroids and androgens, whereas estrogen remained at a steady level. Treatment with androstenedione had no effect on SGBS proliferation and differentiation, but adult adipocytes exhibited a significant higher accumulation of triglycerides. Progesterone (up to 2-fold), testosterone (up to 38-fold) and cortisone (up to 1.4-fold) – but not cortisol – were elevated by androstenedione administration in adult adipocytes. Estrogen was not altered. Data suggest that androgen does not negatively influence adipogenic differentiation, but steroidogenic function of SGBS adipocytes.

Open access

Mojca Zerjav Tansek, Ana Bertoncel, Brina Sebez, Janez Zibert, Urh Groselj, Tadej Battelino and Magdalena Avbelj Stefanija

Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.

Open access

Sylvain Roumeau, Joannice Thevenon, Lemlih Ouchchane, Salwan Maqdasy, Marie Batisse-lignier, Christian Duale, Nathalie Pham Dang, Philippe Caron, Igor Tauveron and Laurent Devoize

Objective: The dental and periodondal impact of GH/IGF-1 hypersecretion has been poorly investigated until now. Our aim is to precisely describe the oro-dental state of acromegalic patients and to study the impact of GH/IGF-1 hypersecretion on patients' reported oral health related quality of life (OHRQoL).

Methods: After collecting characteristics of their disease, acromegalic patients answered the GOHAI questionnaire assessing their OHRQoL, the AcroQoL questionnaire and then benefited from a complete stomatological and radiological examination (orthopantomogram systematically, retro-alveolar radiography or Cone Beam computed tomography if necessary).

Results: 29 patients aged 59.1±16.0 years were included. The average DMFT index (sum of Decayed, Missing and Filled Teeth per patient) was 19.0±7.8. 16/29 patients had a gingivitis and 18/29 a mild to moderate chronic periodontitis, but no case of severe chronic periodontitis was found, probably because the frequency of a protective thick gingival biotype was increased (9/29). No case of generalized gingival hypertrophy or diffuse hyper-cementosis was observed. According to the Add-GOHAI score, only 8/26 patients had a satisfactory OHRQoL. This parameter was correlated to the acromegaly-specific quality of life according to the AcroQoL score. Interestingly, 11/29 patients had bulky oral bony outgrowths (OBO) such as large maxillary or mandibular tori and multiple vestibular exostosis.

Conclusions: The unsatisfactory OHRQoL reported by acromegalic patients contrasts with a rather good objective oro-dental state and annual oral examination seems relevant in this population. Finally, we report that huge OBO could be helpful signposts for the diagnosis of acromegaly.

Open access

Cheng Han Ng, Yip Han Chin, Marcus Hon Qin Tan, Jun Xuan Ng, Samantha Peiling Yang, Jolene Jiayu Kiew and Chin Meng Khoo

Purpose:

Primary hyperparathyroidism (PHPT) is a common condition affecting people of all ages and is mainly treated with parathyroidectomy. Cinacalcet has been widely used in secondary or tertiary hyperparathyroidism, but the use of cinacalcet in PHPT is less clear.

Methods:

Searches were conducted in Medline and Embase for cinacalcet use in PHPT from induction to 10 April 2020. Articles and conferences abstracts describing the use of cinacalcet for PHPT in prospective or retrospective cohorts and randomized controlled trials restricted to English language only. We initially identified 1301 abstracts. Each article went extraction by two blinded authors on a structured proforma. Continuous outcomes were pooled with weight mean difference (WMD). Quality of included articles was assessed with Newcastle Ottwa Scale and Cochrane Risk of Bias 2.0.

Results:

Twenty-eight articles were included. Normalization rate of serum Ca levels was reported at 90% (CI: 0.82 to 0.96). Serum levels of Ca and PTH levels were significantly reduced (Ca, WMD: 1.647, CI: −1.922 to −1.371; PTH, WMD: −31.218, CI: −41.671 to −20.765) and phosphate levels significantly increased (WMD: 0.498, CI: 0.400 to 0.596) after cinacalcet therapy. The higher the baseline Ca levels, the greater Ca reduction with cinacalcet treatment. Age and gender did not modify the effect of cinacalcet on serum Ca levels.

Conclusion:

The results from the meta-analysis support the use of cinacalcet as an alternative or bridging therapy to treat hypercalcemia in people with PHPT.

Open access

Mark R Postma, Pia Burman and André P van Beek

Introduction:

Adult-onset growth hormone deficiency (AGHD) is usually the last deficiency to be substituted in hypopituitarism. In children with documented GH deficiency, treatment without delay is crucial for achieving optimal effects on growth and development. In adults, it is not known whether a delay in treatment initiation influences biochemical response and the favourable physiological effects resulting from GH replacement therapy (GHRT).

Methods:

A total of 1085 GH-deficient adults from KIMS (Pfizer International Metabolic Database) were included, adequately replaced with all pituitary hormones except for GH at baseline. Patients were stratified by sex and age (20–50 years and ≥50 years) and subsequently divided into two groups below and above the median duration of unsubstituted AGHD for that subgroup. The median time of unsubstituted GHD for the total cohort was 2.53 years (P5 = 0.35, P95 = 24.42).

Results:

Beneficial effects of 4 years of GHRT were observed on lipids and quality of life in all subgroups. A decrease in waist circumference was observed only in older (>50 years) patients. There was no difference in IGF-I SDS and in GH dose required to normalize IGF-I in patients with a duration of unsubstituted AGHD above or below the median. No relevant differences were found between the groups for anthropometric measures, cardiovascular risk factors and quality of life scores.

Conclusion:

In contrast to GHD in children and adolescents, no difference could be established in treatment response between early or late initiation of GHRT in AGHD in terms of required GH dose, IGF-I, metabolic health and quality of life.

Open access

Jiayang Lin, Peizhen Zhang, Yan Huang, Xueyun Wei, Dan Guo, Jianfang Liu, Deying Liu, Yajuan Deng, Bingyan Xu, Chensihan Huang, Xiaoyu Yang, Yan Lu, Lijing Jia and Huijie Zhang

Background: Glycoprotein non-metastatic protein B (Gpnmb) has been identified as a new cytokine secreted by hepatocyte that plays an important role in balancing lipid homeostasis and development of obesity and metabolic disorders. However, information is not available regarding the association between circulating Gpnmb and hyperthyroid in humans.

Methods: We measured serum Gpnmb in 180 hyperthyroid patients and 82 healthy subjects that were recruited from the clinic. Of them, 46 hyperthyroid patients received thionamide treatment for 3 months.

Results: Hyperthyroid subjects had higher levels of circulating Gpnmb than healthy controls (47.8±10.1 ng/ml vs. 31.0±4.9 ng/ml, P < 0.001). Subjects with higher levels of serum free triiodothyronine (T3) and free thyroxine (T4) had higher levels of circulating Gpnmb. After thionamide treatment, levels of circulating Gpnmb in hyperthyroid subjects remarkably declined with significant improvement of thyroid function (P < 0.001). Furthermore, the change of circulating Gpnmb levels was significantly associated with basal metabolic rate (BMR) and thyroid hormones including free T3 and free T4, adjusting for age, gender, smoking and BMI before thionamide treatment. In multivariable logistic regression analyses, circulating Gpnmb was significantly associated with risks of hyperthyroidism [OR (95% CI): 1.44(1.20-1.74), P<0.001], adjusted for age, gender, BMI, fasting glucose, HOMA-IR, LDL-cholesterol, ALT and AST.

Conclusions: These findings indicate that circulating Gpnmb concentrations are independently associated with hyperthyroid, suggesting that circulating Gpnmb may be a predictor of risk for hyperthyroidism and can be used for therapeutic monitoring.

Open access

Helle Keinicke, Gao Sun, Caroline M. Junker Mentzel, Merete Fredholm, Linu Mary John, Birgitte Andersen, Kirsten Raun and Marina Kjærgaard

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide, and subsequently also the risk of developing nonalcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues has, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with subcutaneous administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss, and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow while no differences was observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs towards production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health, and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

Open access

David Koeckerling, Jeremy W Tomlinson and Jeremy F Cobbold

Non-alcoholic fatty liver disease is a chronic liver disease which is closely associated with components of the metabolic syndrome. Its high clinical burden results from the growing prevalence, inherent cardiometabolic risk and potential of progressing to cirrhosis. Patients with non-alcoholic fatty liver disease show variable rates of disease progression through a histological spectrum ranging from steatosis to steatohepatitis with or without fibrosis. The presence and severity of fibrosis are the most important prognostic factors in non-alcoholic fatty liver disease. This necessitates risk stratification of patients by fibrosis stage using combinations of non-invasive methods, such as composite scoring systems and/or transient elastography. A multidisciplinary approach to treatment is advised, centred on amelioration of cardiometabolic risk through lifestyle and pharmacological interventions. Despite the current lack of licensed, liver-targeted pharmacotherapy, several promising agents are undergoing late-phase clinical trials to complement standard management in patients with advanced disease. This review summarises the current concepts in diagnosis and disease progression of non-alcoholic liver disease, focusing on pragmatic approaches to risk assessment and management in both primary and secondary care settings.

Open access

Mai Morsi, Torben Schulze, Eike Früh, Dennis Brüning, Uwe Panten and Ingo Rustenbeck

Observing different kinetics of nutrient-induced insulin secretion in fresh and cultured islets under the same condition we compared parameters of stimulus-secretion-coupling in freshly isolated and 22h-cultured NMRI mouse islets. Stimulation of fresh islets with 30 mM glucose after perifusion without nutrient gave a continuously ascending secretion rate. In 22 h-cultured islets the same protocol produced a brisk first phase followed by a moderately elevated plateau, a pattern regarded to be typical for mouse islets. This was also the response of cultured islets to the nutrient secretagogue alpha-ketoisocaproic acid, whereas the secretion of fresh islets increased similarly fast but remained strongly elevated. The responses of fresh and cultured islets to purely depolarizing stimuli (tolbutamide or KCl), however, were closely similar. Signs of apoptosis and necrosis were rare in both preparations. In cultured islets the glucose-induced rise of the cytosolic Ca2+ concentration started from a lower value and was larger as was the increase of the ATP/ADP ratio. The prestimulatory level of mitochondrial reducing equivalents, expressed as the NAD(P)H/FAD fluorescence ratio, was lower in cultured islets, but increased more strongly than in fresh islets. When culture conditions were modified by replacing RPMI with Krebs-Ringer-medium and FCS with BSA, the amount of released insulin varied widely, but the kinetics always showed a predominant first phase. In conclusion, the secretion kinetics of fresh mouse islets is more responsive to variations of nutrient stimulation than cultured islets. The more uniform kinetics of the latter may be caused by a different use of endogenous metabolites.

Open access

Chunliang Yang, Junyi Li, Fei Sun, Haifeng Zhou, Jia Yang and Chao Yang

Hyperglycemia is the consequence of blood glucose dysregulation and a driving force of diabetic complications including retinopathy, nephropathy and cardiovascular diseases. The serum and glucocorticoid inducible kinase-1 (SGK1) has been suggested in the modulation of various pathophysiological activities. However, the role of SGK1 in blood glucose homeostasis remains less appreciated. In this review, we intend to summarize the function of SGK1 in glucose level regulation and to examine the evidence supporting the therapeutic potential of SGK1 inhibitors in hyperglycemia. Ample evidence points to the controversial roles of SGK1 in pancreatic insulin secretion and peripheral insulin sensitivity, which reflects the complex interplay between SGK1 activation and blood glucose fluctuation. Furthermore, SGK1 is engaged in glucose absorption and excretion in intestine and kidney and participates in the progression of hyperglycemia-induced secondary organ damage. As a net effect, blockage of SGK1 activation via either pharmacological inhibition or genetic manipulation seems to be helpful in glucose control at varying diabetic stages.