Browse

You are looking at 1 - 10 of 597 items for

Open access

Mengxue Yang, Bowen Sun, Jianhui Li, Bo Yang, Jie Xu, Xue Zhou, Jie Yu, Xuan Zhang, Qun Zhang, Shan Zhou and Xiaohua Sun

Objectives

The pathogenesis of Graves’ disease (GD) remains unclear. In terms of environmental factors, GD development may be associated with chronic inflammation caused by alteration of the intestinal flora. This study explored the association of intestinal flora alteration with the development of GD among the Han population in southwest China.

Design and methods

Fifteen GD patients at the Affiliated Hospital of Zunyi Medical College between March 2016 and March 2017 were randomly enrolled. Additionally, 15 sex- and age-matched healthy volunteers were selected as the control group during the same period. Fresh stool samples were collected, and bacterial 16S RNA was extracted and amplified for gene sequencing with the Illumina MiSeq platform. The sequencing results were subjected to operational taxonomic unit-based classification, classification verification, alpha diversity analysis, taxonomic composition analysis and partial least squares-discriminant analysis (PLS-DA).

Results

The diversity indices for the GD group were lower than those for the control group. The GD group showed significantly higher abundances of Firmicutes, Proteobacteria and Actinobacillus and a higher Firmicutes/Bacteroidetes ratio than the control group. PLS-DA suggested the satisfactory classification of the flora between the GD group and the control group. The abundances of the genera Oribacterium, Mogibacterium, Lactobacillus, Aggregatibacter and Mogibacterium were significantly higher in the GD group than in the control group (P < 0.05).

Conclusions

The intestinal flora of GD patients was significantly different from that of the healthy population. Thus, alteration of intestinal flora may be associated with the development of GD.

Open access

Gamze Akkuş, Isa Burak Güney, Fesih Ok, Mehtap Evran, Volkan Izol, Şeyda Erdoğan, Yıldırım Bayazıt, Murat Sert and Tamer Tetiker

Background

The management of adrenal incidentaloma is still a challenge with respect to determining its functionality (hormone secretion) and malignancy. In this light, we performed 18F-FDG PET/CT scan to assess the SUVmax values in different adrenal masses including Cushing syndrome, pheochromocytoma, primary hyperaldosteronism and non-functional adrenal adenomas.

Methods

Total 109 (73 F, 36 M) patients with adrenal mass (incidentaloma), mean age of 53.3 ± 10.2 years (range, 24–70) were screened by 18F-FDG PET/CT. Data of 18F-FDG PET/CT imaging of the patients were assessed by the same specialist. Adrenal masses were identified according to the calculated standardized uptake values (SUVs). Clinical examination, 24-h urine cortisol, catecholamine metabolites, 1-mg dexamethasone suppression test, aldosterone/renin ratio and serum electrolytes were analyzed.

Results

Based on the clinical and hormonal evaluations, there were 100 patients with non-functional adrenal mass, four with cortisol-secreting, four with pheochromocytomas and one with aldosterone-secreting adenoma. Mean adrenal mass diameter of 109 patients was 2.1 ± 4.3 (range, 1–6.5 cm). The 18F-FDG PET/CT imaging of the patients revealed that lower SUVmax values were found in non-functional adrenal masses (SUVmax 3.2) when compared to the functional adrenal masses including four with cortisol-secreting adenoma (SUVmax 10.1); four with pheochromcytoma (SUVmax 8.7) and one with aldosterone-secreting adenomas (SUVmax 3.30). Cortisol-secreting (Cushing syndrome) adrenal masses showed the highest SUVmax value (10.1), and a cut-off SUVmax of 4.135 was found with an 84.6% sensitivity and 75.6% specificity cortisol-secreting adrenal adenoma.

Conclusions

Consistent with the similar studies, non-functional adrenal adenomas typically do not show increased FDG uptake and a certain form of functional adenoma could present various FDG uptake in FDG PET/CT. Especially functional adrenal adenomas (cortisol secreting was the highest) showed increased FDG uptake in comparison to the non-functional adrenal masses. Therefore, setting a specific SUVmax value in the differentiation of malignant adrenal lesion from the benign one is risky and further studies, including a high number of functional adrenal mass are needed.

Open access

J Chycki, A Zajac, M Michalczyk, A Maszczyk and J Langfort

Objectives

The present study verified the effect of moderate-to-high-intensity aerobic exercise on the endocrine response profile and adipose tissue in young healthy men with different phenotype characteristics.

Design

Eighteen men were divided into three experimental groups with defined body components and specific physical fitness: Endurance phenotype – EP (n = 6; low body mass; low fat content; aerobic endurance trained), Athletic phenotype – AP (n = 6; high body mass; low fat content, resistance trained), Obesity phenotype – OP (n = 6; high body mass; high fat content, untrained).

Methods

The participants performed an progressive exercise protocol on a treadmill (30% VO2max, 50% VO2max, 70% VO2max), separated by 45 s of passive rest for blood collection.

Results

Plasma glucose oxidation increased in relation to exercise intensity, but to a greater extent in the AP group. The free fatty acids’ plasma level decreased with a rise in exercise intensity, but with different kinetics in particular phenotypes. Plasma growth hormone increased after the cessation of exercise and was significantly higher in all groups 45 min into recovery compared to resting values. Plasma insulin decreased during exercise in all groups, but in the OP, the decrease was blunted.

Conclusions

The results indicate that the rate of lipolysis, hormonal and metabolic response to aerobic exercise depends on the individuals’ phenotype. Thus, exercise type, duration and intensity have to be strictly individualized in relation to phenotype in order to reach optimal metabolic benefits.

Open access

Jakob Høgild Langdahl, Anja Lisbeth Frederiksen, John Vissing, Morten Frost, Knud Bonnet Yderstræde and Per Heden Andersen

Aim

This case–control study aimed to examine impairments in glucose metabolism in non-diabetic carriers of the mitochondrial mutation m.3243A>G by evaluating insulin secretion capacity and sensitivity.

Methods

Glucose metabolism was investigated in 23 non-diabetic m.3243A>G carriers and age-, sex- and BMI-matched healthy controls with an extended 4-h oral glucose tolerance test (OGTT). Insulin sensitivity index and acute insulin response were estimated on the basis of the OGTT. This was accompanied by examination of body composition by dual-energy X-ray absorptiometry (DXA), maximum aerobic capacity and a Recent Physical Activity Questionnaire (RPAQ).

Results

Fasting p-glucose, s-insulin and s-c-peptide levels did not differ between m.3243A>G carriers and controls. Insulin sensitivity index (BIGTT-S1) was significantly lower in the m.3243A>G carriers, but there was no difference in the acute insulin response between groups. P-lactate levels were higher in carriers throughout the OGTT. VO2max, but not BMI, waist and hip circumferences, lean and fat body mass%, MET or grip strength, was lower in mutation carriers. BIGTT-S1 remained lower in mutation carriers after adjustment for multiple confounding factors including VO2max in regression analyses.

Conclusions

Glucose metabolism in m.3243A>G carriers was characterized by reduced insulin sensitivity, which could represent the earliest phase in the pathogenesis of m.3243A>G-associated diabetes.

Open access

Qi Che, Xirong Xiao, Xu Jun, Miao Liu, Yongning Lu, Suying Liu and Xi Dong

Accumulating evidence revealed that the leading risk factor of endometrial cancer is exposure to endogenous and exogenous estrogens, while the exact mechanism underlying estrogen contribution to endometrial cancer progression has not been elucidated clearly. Interleukin (IL)-6 have been verified to be critical for tumor progression in several human cancers. In this study, we provided evidence that 17β-estradiol (E2) could significantly promote endometrial cancer cells viability, migration and invasion through activation of IL-6 pathway, which involved in its downstream pathway and target genes (p-Stat3, Bcl-2, Mcl-1, CyclinD1 and MMP2). Meanwhile, utilization of IL-6 neutralizing antibody could partially attenuate the increased cancer growth and invasion abilities in Ishikawa and RL95-2 endometrial cancer cell lines and an orthotopic endometrial cancer model. We established a causative link between estrogen and IL-6 signaling activation in the development of endometrial cancer. The molecular mechanism defined in this study provided the evidence that E2 promotes endometrial carcinoma progression via activating the IL-6 pathway, indicating that interruption of IL-6 might be an essential therapeutic strategy in estrogen-dependent endometrial cancer.

Open access

Tatiana Novoselova, Peter King, Leo Guasti, Louise A Metherell, Adrian J L Clark and Li F Chan

The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic-pituitary-adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r knockout (Mc2r−/−) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap-/- mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap−/− mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation.

Open access

Tingting Xia, Hongru Sun, Hao Huang, Haoran Bi, Rui Pu, Lei Zhang, Yuanyuan Zhang, Ying Liu, Jing Xu, Justina Ucheojor Onwuka, Yupeng Liu, Binbin Cui and Yashuang Zhao

According to its incidence patterns, colorectal cancer (CRC) tends to occur more frequently in males than in females, and the evidence shows that CRC is a hormone-related tumor. These findings indicate that androgen receptor (AR) gene methylation might be important for the regulation of the CRC risk in the different sexes. We used a case-control study to investigate the association between AR methylation in peripheral blood (PBL) and CRC risk. A cohort study was conducted to analyze the effect of AR methylation levels in both PBL and tissue on the prognosis of CRC. AR methylation levels were detected using methylation-sensitive high-resolution melting (MS-HRM). The results indicate that the hypomethylation of AR was significantly associated with the risk of CRC (OR = 1.869, 95%CI: 1.629-2.141 P < 0.001), and the results remained similar after adjusting for the propensity score (PS) (OR = 1.344, 95%CI: 1.147-1.575 P < 0.001) and PS matching (OR = 1.138, 95%CI: 1.000-1.292 P = 0.049). The hypomethylation of AR was significantly associated with CRC in males (OR = 2.309, 95%CI: 1.200-4.245; P = 0.012) but not females (OR = 1.000, 95%CI: 0.567-1.765; P = 0.999). The methylation status of AR in PBL and tissue does not seem to be associated with prognosis in colorectal cancer (OR = 1.425 95%CI: 0.895-2.269 P = 0.135; OR = 0.930 95%CI: 0.674-1.285 P = 0.661). We conclude that AR hypomethylation in PBL is associated with a high risk of CRC and may serve as a biomarker.

Open access

Kosmas Daskalakis, Marina Tsoli, Anna Angelousi, Evanthia Kassi, Krystallenia I Alexandraki, Denise Kolomodi, Gregory Kaltsas and Anna Koumarianou

Comparisons between everolimus and sunitinib regarding their efficacy and safety in neuroendocrine neoplasms (NENs) are scarce. We retrospectively analysed the clinicopathological characteristics and outcomes in 92 patients with well-differentiated (WD) NEN of different origin (57 pancreatic NENs (PanNENs)), treated with molecular targeted therapy (MTT) with everolimus or sunitinib, first- (73:19) or second-line (sequential; 12:22) for progressive disease. Disease control rates (DCR: partial response or stable disease) at first-line were higher in all patients treated with everolimus than sunitinib (64/73 vs 12/19, P = 0.012). In PanNENs, DCR at first-line everolimus was 36/42 versus 9/15 with sunitinib (P = 0.062). Progression-free survival (PFS) at first-line everolimus was longer than sunitinib (31 months (95% CI: 23.1–38.9) vs 9 months (95% CI: 0–18.5); log-rank P < 0.0001) in the whole cohort and the subset of PanNENs (log-rank P < 0.0001). Median PFS at second-line MTT was 12 months with everolimus (95% CI: 4.1–19.9) vs 13 months with sunitinib (95% CI: 9.3–16.7; log-rank P = 0.951). Treatment with sunitinib (HR: 3.47; 95% CI: 1.5–8.3; P value: 0.005), KI67 >20% (HR: 6.38; 95% CI: 1.3–31.3; P = 0.022) and prior chemotherapy (HR: 2.71; 95% CI: 1.2–6.3; P = 0.021) were negative predictors for PFS at first line in multivariable and also confirmed at multi-state modelling analyses. Side effect (SE) analysis indicated events of serious toxicities (Grades 3 and 4: n = 13/85 for everolimus and n = 4/41 for sunitinib). Discontinuation rate due to SEs was 20/85 for everolimus versus 4/41 for sunitinib (P = 0.065). No additive toxicity of second-line MTT was confirmed. Based on these findings, and until reliable predictors of response become available, everolimus may be preferable to sunitinib when initiating MTT in progressive NENs.

Open access

Vito Francic, Martin Keppel, Verena Schwetz, Christian Trummer, Marlene Pandis, Valentin Borzan, Martin R Grübler, Nicolas D Verheyen, Marcus E Kleber, Graciela Delgado, Angela P Moissl, Benjamin Dieplinger, Winfried März, Andreas Tomaschitz, Stefan Pilz and Barbara Obermayer-Pietsch

Objective

Cardiovascular disease manifestation and several associated surrogate markers, such as vitamin D, have shown substantial seasonal variation. A promising cardiovascular biomarker, soluble ST2 (sST2), has not been investigated in this regard – we therefore determined if systemic levels of sST2 are affected by seasonality and/or vitamin D in order to investigate their clinical interrelation and usability.

Design

sST2 levels were measured in two cohorts involving hypertensive patients at cardiovascular risk, the Styrian Vitamin D Hypertension Trial (study A; RCT design, 8 weeks 2800 IU cholecalciferol daily) and the Ludwigshafen Risk and Cardiovascular Health Study (LURIC; study B; cross-sectional design).

Methods

The effects of a vitamin D intervention on sST2 levels were determined in study A using ANCOVA, while seasonality of sST2 levels was determined in study B using ANOVA.

Results

The concentrations of sST2 remained unchanged by a vitamin D intervention in study A, with a mean treatment effect (95% confidence interval) of 0.1 (−0.6 to 0.8) ng/mL; P = 0.761), despite a rise in 25(OH)D (11.3 (9.2–13.5) ng/mL; P < 0.001) compared to placebo. In study B, seasonal variations were present in 25(OH)D levels in men and women with or without heart failure (P < 0.001 for all subgroups), while sST2 levels remained unaffected by the seasons in all subgroups.

Conclusions

Our study provides the first evidence that systemic sST2 levels are not interrelated with vitamin D levels or influenced by the seasons in subjects at cardiovascular risk.

Open access

Simon Schimmack, Yangchao Yang, Klaus Felix, Markus Herbst, Yixiong Li, Miriam Schenk, Frank Bergmann, Thilo Hackert and Oliver Strobel

Objective: Elevated pre-operative C-reactive protein (CRP) serum values have been reported to be associated with poor overall survival for patients with pancreatic neuroendocrine neoplasms (pNEN). The aim of this study was to identify mechanisms linking CRP to poor prognosis in pNEN.

Methods: The malignant properties of pNENs were investigated using the human pNEN cell-lines BON1 and QGP1 exposed to CRP or IL-6. Analyses were performed by ELISA, western blot, flow cytometry and immunocytochemistry as well as invasion and proliferation assays. To compare cytokine profiles and CRP levels, 76 serum samples of pNEN patients were analyzed using Luminex technology. In parallel, the expression of CRP and growth signaling pathway proteins was assessed on cell lines and paraffin-embedded primary pNEN.

Results: In BON1 and QGP1 cells, inflammation (exposure to IL-6) significantly up-regulated CRP expression and secretion as well as migratory properties. CRP stimulation of BON1 cells increased IL-6 secretion and invasion. This was accompanied by activation/phosphorylation of the ERK, AKT, and/or STAT3 pathways. Although known CRP receptors -CD16, CD32 and CD64 - were not detected on BON1 cells, CRP-uptake of pNEN cells was shown after CRP exposure. In patients, increased pre-operative CRP-levels (≥5 mg/L) were associated with significantly higher serum levels of IL-6 and G-CSF, as well as with an increased CRP-expression and ERK/AKT/STAT3-phosphorylation in pNEN tissue.

Conclusion: The malignant properties of pNEN cells can be stimulated by CRP and IL-6 promoting ERK/AKT/STAT pathways activation as well as invasion, thus linking systemic inflammation and poor prognosis.