Browse

You are looking at 41 - 50 of 593 items for

Open access

Marilena Nakaguma, Fernanda A Correa, Lucas S Santana, Anna F F Benedetti, Ricardo V Perez, Martha K P Huayllas, Mirta B Miras, Mariana F A Funari, Antonio M Lerario, Berenice B Mendonca, Luciani R S Carvalho, Alexander A L Jorge and Ivo J P Arnhold

Aim

Congenital hypopituitarism has an incidence of 1:3500–10,000 births and is defined by the impaired production of pituitary hormones. Early diagnosis has an impact on management and genetic counselling. The clinical and genetic heterogeneity of hypopituitarism poses difficulties to select the order of genes to analyse. The objective of our study is to screen hypopituitarism genes (candidate and previously related genes) simultaneously using a target gene panel in patients with congenital hypopituitarism.

Methods

Screening of 117 subjects with congenital hypopituitarism for pathogenic variants in 26 genes associated with congenital hypopituitarism by massively parallel sequencing using a customized target gene panel.

Results

We found three novel pathogenic variants in OTX2 c.295C>T:p.Gln99*, GLI2 c.1681G>T:p.Glu561* and GHRHR c.820_821insC:p.Asp274Alafs*113, and the previously reported variants in GHRHR c.57+1G>A and PROP1 [c.301_302delAG];[c.109+1G>A].

Conclusions

Our results indicate that a custom-designed panel is an efficient method to screen simultaneously variants of biological and clinical relevance for congenital GH deficiency. A genetic diagnosis was possible in 5 out of 117 (4%) patients of our cohort. We identified three novel pathogenic variants in GHRHR, OTX2 and GLI2 expanding the spectrum of variants associated with congenital hypopituitarism.

Open access

Meena Asmar, Ali Asmar, Lene Simonsen, Flemming Dela, Jens Juul Holst and Jens Bülow

Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increase blood flow and triglyceride clearance in subcutaneous abdominal adipose tissue in lean humans. The present experiments were performed to determine whether the increase involves capillary recruitment. Eight lean healthy volunteers were studied before and after 1-h infusion of GIP or saline during a hyperglycemic-hyperinsulinemic clamp, raising plasma glucose and insulin to postprandial levels. Subcutaneous abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique, and microvascular blood volume was determined by contrast-enhanced ultrasound imaging. During infusion of saline and the clamp, both ATBF (2.7 ± 0.5 ml/min, 100 g/tissue) and microvascular blood volume remained unchanged throughout the experiments. During GIP infusion and the clamp, ATBF increased ~fourfold to 11.4 ± 1.9 ml/min 100 g/tissue, P<0.001. Likewise, the contrast-enhanced ultrasound signal intensity, a measure of the microvascular blood volume, increased significantly one hour after infusion of GIP and the clamp (P=0.003), but not in the control experiments. In conclusion, the increase in ATBF during GIP infusion involves recruitment of capillaries in healthy lean subjects, which probably increases the interaction of circulating lipoproteins with lipoprotein lipase, thus promoting adipose tissue lipid uptake.

Open access

Monica F Stecchini, Zilda Braid, Candy B More, Davi C Aragon, Margaret Castro, Ayrton C Moreira and Sonir R Antonini

Objective

To investigate the impact of early exposure to androgen excess on gonadotropin-dependent puberty (GDP) and final height (FH) of patients with androgen-secreting adrenocortical tumors (ACT) in childhood.

Methods

Retrospective cohort study. Occurrence of GDP and achievement of FH were evaluated. Central precocious puberty (CPP) and early fast puberty (EFP) were considered pubertal disorders. Patients with normal puberty and pubertal disorders were compared.

Results

The study included 63 patients (44F), followed in a single institution from 1975 until 2017. At diagnosis of ACT, median age was 25.8 months; duration of signs, 6 months; stature SDS, 0.5 (−3.6 to 3.9) and bone age advancement, 14.7 months (−27.9 to 85.4). To date, 37 patients developed GDP: 26 had normal puberty; one, precocious thelarche; seven, CPP and three, EFP. GnRHa effectively treated CPP/EFP. Tall stature and older age at diagnosis of ACT were associated with risk of CPP alone (RR 4.17 (95% CI 1.17–14.80)) and CPP/EFP (RR 3.0 (95% CI 1.04–8.65)). Recurrence/metastasis during follow-up were associated with risk of CPP alone (RR 4.17 (95% CI 1.17–14.80)) and CPP/EFP (RR 3.0 (95% CI 1.12–8.02)). Among the 19 patients that reached FH, stature SDS dropped from 1.4 to −0.02 since diagnosis of ACT (P = 0.01). Seventeen achieved normal FH. There was no difference in FH SDS between patients with normal puberty and pubertal disorders (P = 0.75).

Conclusions

Gonadotropin-dependent pubertal disorders are common in patients with androgen-secreting ACT in childhood. FH is usually not impaired. The study reinforces the importance of close follow-up after surgery to identify and treat consequences of early exposure to androgen excess.

Open access

T Szarvas, B Jardin-Watelet, N Bourgoin, M J Hoffmann, P Nyirády, C Oláh, T Széll, A Csizmarik, B Hadaschik and H Reis

Recently, a neuroendocrine-like molecular subtype has been discovered in muscle-invasive urothelial bladder cancer (BC). Chromogranin A (CGA) is a widely used tissue and serum marker in neuroendocrine tumors. Our aim was to evaluate serum CGA (sCGA) concentrations and their associations with clinical and follow-up data in BC and renal cell carcinoma (RCC). sCGA concentrations were analyzed in the following cohorts: (1) BC training set (n = 188), (2) BC validation set (n = 125), (3) RCC patients (n = 77), (4) healthy controls (n = 97). CGA immunohistochemistry and RT-qPCR analyses were performed in 20 selected FFPE and 29 frozen BC tissue samples. Acquired data were correlated with clinicopathological parameters including comorbidities with known effect on sCGA as well as with patients’ follow-up data. sCGA levels were significantly higher in BC but not in RCC patients compared to healthy controls. High sCGA levels were independently associated with poor overall and disease-specific survival both in the BC training (P < 0.001, P = 0.002) and validation set (P = 0.009, P = 0.017). sCGA levels were inversely correlated with glomerulus filtrating rate (GFR) and linearly correlated with creatinine clearance and urea concentrations. These correlations were not related to the prognostic value of sCGA. Tissue CGA levels were low to absent independently of sCGA concentrations. Our results demonstrate elevated levels and an independent prognostic value for sCGA in BC but not in RCC. Despite the significant correlation between sCGA and GFR, the prognostic relevance of sCGA seems not related to impaired renal function or other comorbidities.

Open access

Jakub Chycki, Adam Zajac, Małgorzata Michalczyk, Adam Maszczyk and Jozef Langfort

Objectives: The present study verified the effect of moderate to high intensity aerobic exercise on the endocrine response profile and adipose tissue in young healthy men with different phenotype characteristics.

Design: Eighteen men were divided into three experimental groups with defined body components and specific physical fitness: Endurance phenotype - EP (n=6; low body mass; low fat content; aerobic endurance trained), Athletic phenotype - AP (n=6; high body mass; low fat content, resistance trained), Obesity phenotype - OP (n=6; high body mass; high fat content, untrained).

Methods: The participants performed an progressive exercise protocol on a treadmill (30% VO2max, 50% VO2max, 70% VO2max), separated by 45s of passive rest for blood collection.

Results: Plasma glucose oxidation increased in relation to exercise intensity, but to a greater extent in the AP group. The free fatty acids plasma level decreased with a rise in exercise intensity, but with different kinetics in particular phenotypes. Plasma growth hormone increased after the cessation of exercise, and was significantly higher in all groups 45 minutes into recovery compared to resting values. Plasma insulin decreased during exercise in all groups, but in the OP, the decrease was blunted.

Conclusions: The results indicate that the rate of lipolysis, hormonal and metabolic response to aerobic exercise depends on the individuals phenotype. Thus, exercise type, duration and intensity have to be strictly individualized in relation to phenotype in order to reach optimal metabolic benefits.

Open access

Madalena von Hafe, João Sergio Neves, Catarina Vale, Marta Borges-Canha and Adelino Leite-Moreira

Thyroid hormones have a central role in cardiovascular homeostasis. In myocardium, these hormones stimulate both diastolic myocardial relaxation and systolic myocardial contraction, have a pro-angiogenic effect and an important role in extracellular matrix maintenance. Thyroid hormones modulate cardiac mitochondrial function. Dysfunction of thyroid axis impairs myocardial bioenergetic status. Both overt and subclinical hypothyroidism are associated with a higher incidence of coronary events and an increased risk of heart failure progression. Endothelial function is also impaired in hypothyroid state, with decreased nitric oxide-mediated vascular relaxation. In heart disease, particularly in ischemic heart disease, abnormalities in thyroid hormone levels are common and are an important factor to be considered. In fact, low thyroid hormone levels should be interpreted as a cardiovascular risk factor. Regarding ischemic heart disease, during the late post-myocardial infarction period, thyroid hormones modulate left ventricular structure, function and geometry. Dysfunction of thyroid axis might even be more prevalent in the referred condition since there is an upregulation of type 3 deiodinase in myocardium, producing a state of local cardiac hypothyroidism. In this focused review, we summarize the central pathophysiological and clinical links between altered thyroid function and ischemic heart disease. Finally, we highlight the potential benefits of thyroid hormone supplementation as a therapeutic target in ischemic heart disease.

Open access

Eugenie S Lim, Shanty G Shah, Mona Waterhouse, Scott Akker, William Drake, Nick Plowman, Daniel M Berney, Polly Richards, Ashok Adams, Ewa Nowosinska, Carmel Brennan and Maralyn Druce

Context

Differentiated thyroid cancer (DTC) is usually treated by thyroidectomy followed by radioiodine ablation and generally has a good prognosis. It may now be possible to limit the amount of treatment without impacting on efficacy. It is not known whether coexistent thyroiditis impacts on radioiodine uptake or on its potential efficacy, but this could provide a rationale for modification to current therapeutic protocols.

Design

This was a retrospective cohort study of radioiodine uptake on imaging after radioiodine ablation for DTC in patients with and without concurrent thyroiditis. All patients with histologically confirmed DTC treated with radioiodine ablation after thyroidectomy in a single centre from 2012 to 2015 were included. The primary outcome assessed was the presence of low or no iodine uptake on post-ablation scan, as reported by a nuclear medicine physician blinded to the presence or absence of thyroiditis.

Results

One hundred thirty patients with available histopathology results were included. Thyroiditis was identified in 42 post-operative specimens and 15 of these patients had low or no iodine uptake on post-ablation scan, compared to only 2 of 88 patients without thyroiditis (P < 0.0001) with further data analysis dividing the groups by ablation activity received (1100 MBq or 3000 MBq).

Conclusions

Concurrent thyroiditis may impair the uptake of radioactive iodine in management of DTC. Given that patients with DTC and thyroiditis already have a good prognosis, adopting a more selective approach to this step in therapy may be indicated. Large, longitudinal studies would be required to determine if omitting radioactive iodine therapy from those patients with concurrent thyroiditis has a measurable impact on mortality from thyroid cancer.

Open access

Jakob Høgild Langdahl, Anja Lisbeth Frederiksen, John Vissing, Morten Frost Nielsen, Knud Bonnet Yderstræde and Per Heden Andersen

Aim: This case-control study aimed to examine impairments in glucose metabolism in non-diabetic carriers of the mitochondrial mutation m.3243A>G by evaluating insulin secretion capacity and sensitivity.

Methods: Glucose metabolism was investigated in 23 non-diabetic m.3243A>G carriers and matched healthy controls with an extended 4-hour oral glucose tolerance test (OGTT). Insulin sensitivity index and acute insulin response were estimated on basis of the OGTT. This was accompanied by examination of body composition by Dual-energy X-ray Absorptiometry (DXA), maximum aerobic capacity, and a Recent Physical Activity Questionnaire (RPAQ).

Results: Fasting p-glucose, s-insulin and s-c-peptide levels did not differ between m.3243A>G carriers and controls. Insulin sensitivity index (BIGTT-S1) was significantly lower in the m.3243A>G carriers, but there was no difference in the acute insulin response between groups. P-lactate levels were higher in carriers throughout the OGTT. VO2max, but not BMI, waist and hip circumferences, lean and fat body mass %, MET or grip strength, was lower in mutation carriers. BIGTT-S1 remained lower in mutation carriers after adjustment for multiple confounding factors including VO2max in regression analyses.

Conclusions: Glucose metabolism in m.3243A>G carriers was characterized by reduced insulin sensitivity, which could represent the earliest phase in the pathogenesis of m.3243A>G-associated diabetes.

Open access

Yusaku Mori, Hiroyuki Shimizu, Hideki Kushima, Tomomi Saito, Munenori Hiromura, Michishige Terasaki, Masakazu Koshibu, Hirokazu Ohtaki and Tsutomu Hirano

Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.

Open access

M I Stamou, P Varnavas, L Plummer, V Koika and N A Georgopoulos

Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a rare disease with a wide spectrum of reproductive and non-reproductive clinical characteristics. Apart from the phenotypic heterogeneity, IGD is also highly genetically heterogeneous with >35 genes implicated in the disease. Despite this genetic heterogeneity, genetic enrichment in specific subpopulations has been described. We have previously described low prevalence of genetic variation in the Greek IGD cohort discovered with utilization of Sanger sequencing in 14 known IGD genes. Here, we describe the expansion of genetic screening in the largest IGD Greek cohort that has ever been studied with the usage of whole-exome sequencing, searching for rare sequencing variants (RSVs) in 37 known IGD genes. Even though Sanger sequencing detected genetic variation in 21/81 IGD patients in 7/14 IGD genes without any evidence of oligogenicity, whole exome sequencing (WES) revealed that 27/87 IGD patients carried a rare genetic change in a total of 15 genes with 4 IGD cases being oligogenic. Our findings suggest that next-generation sequencing (NGS) techniques can discover previously undetected variation, making them the standardized method for screening patients with rare and/or more common disorders.