Browse

You are looking at 291 - 300 of 772 items for

Open access

Kristin Ottarsdottir, Anna G Nilsson, Margareta Hellgren, Ulf Lindblad and Bledar Daka

The objective of this study was to investigate whether there is a bidirectional association between testosterone concentrations and insulin resistance, in a prospective population study. A random population sample of 1400 men, aged 30–74, was examined in 2002–2005 in southwestern Sweden and followed up in 2012–2014 (N = 657). After excluding subjects without information on sex hormones and insulin resistance, 1282 men were included in the baseline study. Fasting measurements of plasma glucose, insulin and hormones were performed. Insulin resistance was defined using HOMA-Ir. Mean age at baseline was 47.3 ± 11.4 years. From the follow-up survey 546 men were included, mean age 57.7 ± 11.6 years. Low concentrations of total testosterone at baseline were significantly associated with high logHOMA-Ir at follow-up in a multivariable model including age, waist–hip ratio, physical activity, alcohol intake, smoking, LDL, CRP, hypertension, diabetes and logHOMA-Ir at baseline as covariates (β = −0.096, P = 0.006). Similar results were observed for bioavailable testosterone. Men within the lowest quartile of total testosterone at baseline had significantly higher logHOMA-Ir at follow-up than other quartiles (Q1 vs Q2 P = 0.008, Q1 vs Q3 P = 0.001, Q1 vs Q4 P = 0.052). Multivariable analysis of the impact of insulin resistance at baseline on testosterone levels at follow-up revealed no significant associations regarding testosterone concentrations (β = −0.003, P = 0.928) or bioavailable testosterone (β = −0.006, P = 0.873), when adjusting for baseline concentrations of total testosterone, age, waist–hip-ratio, LDL, CRP, physical activity, alcohol intake, smoking, hypertension and diabetes. Low testosterone concentrations at baseline predicted higher insulin resistance at follow-up, but high insulin resistance at baseline could not predict low testosterone at follow-up.

Open access

Satoshi Inoue, Taichi Mizushima, Hiroki Ide, Guiyang Jiang, Takuro Goto, Yujiro Nagata, George J Netto and Hiroshi Miyamoto

We investigated the functional role of ATF2, a transcription factor normally activated via its phosphorylation in response to phospho-ERK/MAPK signals, in the outgrowth of urothelial cancer. In both neoplastic and non-neoplastic urothelial cells, the expression levels of androgen receptor (AR) correlated with those of phospho-ATF2. Dihydrotestosterone treatment in AR-positive bladder cancer cells also induced the expression of phospho-ATF2 and phospho-ERK as well as nuclear translocation and transcriptional activity of ATF2. Meanwhile, ATF2 knockdown via shRNA resulted in significant decreases in cell viability, migration and invasion of AR-positive bladder cancer lines, but not AR-negative lines, as well as significant increases and decreases in apoptosis or G0/G1 cell cycle phase and S or G2/M phase, respectively. Additionally, the growth of AR-positive tumors expressing ATF2-shRNA in xenograft-bearing mice was retarded, compared with that of control tumors. ATF2 knockdown also resulted in significant inhibition of neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene, as well as the expression of Bcl-2/cyclin-A2/cyclin-D1/JUN/MMP-2, in immortalized human normal urothelial SVHUC cells stably expressing AR, but not AR-negative SVHUC cells. Finally, immunohistochemistry in surgical specimens demonstrated significant elevation of ATF2/phospho-ATF2/phospho-ERK expression in bladder tumors, compared with non-neoplastic urothelial tissues. Multivariate analysis further showed that moderate/strong ATF2 expression and phospho-ATF2 positivity were independent predictors for recurrence of low-grade tumors (hazard ratio (HR) = 2.956, P = 0.045) and cancer-specific mortality of muscle-invasive tumors (HR = 5.317, P = 0.012), respectively. Thus, ATF2 appears to be activated in urothelial cells through the AR pathway and promotes the development and progression of urothelial cancer.

Open access

Linfei Yang, Xiao Yu and Yongchao Yang

Although the upregulation of autotaxin (ATX) is associated with many solid tumours, its role in pancreatic neuroendocrine neoplasms (pNEN) has not been well elucidated. The expression of ATX in pNEN tissues and pNEN cell line BON1 was analysed by Western blot, PCR and immunocytochemistry upon exposure to interleukin-6 (IL-6). Additionally, pNEN cell line BON1 was transfected with siRNAs against ATX or signal transducer and activator of transcription 3 (STAT3) and assessed by in vitro invasion assays. The following results were obtained. The expression of ATX in pNEN tissues was significantly increased compared with that in normal pancreatic tissues. High ATX expression was strongly correlated with tumour grade, lymph node metastasis and tumour-node-metastasis stage. Furthermore, ATX downregulation notably inhibited the metastatic capacity of pNEN cells, whereas STAT3 knockdown was found to downregulate the expression of ATX. ATX expression was upregulated in BON1 cells upon stimulation with IL-6, and this was accompanied by activation/phosphorylation of STAT3. Western blot analysis of human pNEN tissue extracts confirmed increased ATX expression and STAT3 phosphorylation with elevated expression levels of IL-6. In conclusion, ATX is upregulated in pNEN and is correlated with the metastatic capacity of pNEN cells, potentially via interaction with STAT3 activation.

Open access

Søs Dragsbæk Larsen, Christine Dalgård, Mathilde Egelund Christensen, Sine Lykkedegn, Louise Bjørkholt Andersen, Marianne Andersen, Dorte Glintborg and Henrik Thybo Christesen

Background

Low foetal vitamin D status may be associated with higher blood pressure (BP) in later life.

Objective

To examine whether serum 25-hydroxyvitamin D2+3 (s-25OHD) in cord and pregnancy associates with systolic and diastolic BP (SBP; DBP) in children up to 3 years of age.

Design

Prospective, population-based cohort study.

Methods

We included 1594 singletons from the Odense Child Cohort with available cord s-25OHD and BP data at median age 3.7 months (48% girls), 18.9 months (44% girls) or 3 years (48% girls). Maternal s-25OHD was also assessed at gestational ages 12 and 29 weeks. Multiple regression models were stratified by sex a priori and adjusted for maternal educational level, season of birth and child height, weight and age.

Results

In 3-year-old girls, SBP decreased with −0.7 mmHg (95% CI −1.1; −0.3, P = 0.001) and DBP with −0.4 mmHg (95% CI −0.7; −0.1, P = 0.016) for every 10 nmol/L increase in cord s-25OHD in adjusted analyses. Moreover, the adjusted odds of having SBP >90th percentile were reduced by 30% for every 10 nmol/L increase in cord s-25OHD (P = 0.004) and by 64% for cord s-25OHD above the median 45.1 nmol/L (P = 0.02). Similar findings were observed between pregnancy s-25OHD and 3-year SBP, cord s-25OHD and SBP at 18.9 months, and cord s-25OHD and DBP at 3 years. No consistent associations were observed between s-25OHD and BP in boys.

Conclusion

Cord s-25OHD was inversely associated with SBP and DBP in young girls, but not in boys. Higher vitamin D status in foetal life may modulate BP in young girls. The sex difference remains unexplained.

Open access

Yuan Fang, Xuehong Zhang, Huilin Xu, Stephanie A Smith-Warner, Dongli Xu, Hong Fang and Wang Hong Xu

The excess risk of cancer observed in patients with type 2 diabetes (T2DM) may have been influenced by detection bias. The aim of this study was to examine the real association by evaluating time-varying site-specific cancer risks in newly diagnosed T2DM patients. A total of 51,324 registered cancer-free individuals newly diagnosed with T2DM between 2004 and 2014 were linked with the Shanghai Cancer Registry and the Vital Statistics through September 2015. A total of 2920 primary, invasive cancer cases were identified during 325,354 person-years period. Within 1 year following diabetes onset, participants with T2DM had higher risks of total, lung and rectal cancer in men and total, liver, pancreas, thyroid, breast and uteri cancer in women. Thereafter the incidence for overall cancer decreased and then increased along with follow-up time, with the upward trend varying by cancer, suggesting potential detection bias. After the initial 1-year period, standardized incidence ratios (SIR) and 95% CIs for overall cancer were 0.80 (95% CI 0.76–0.85) in men and 0.93 (95% CI 0.88–0.99) in women, but a higher risk of breast and thyroid cancers were observed in women, with SIR and 95% CI being 1.13 (1.01, 1.28) and 1.37 (1.11, 1.63), respectively. Our results suggest that T2DM patients are at higher risk of certain cancers; this risk particularly increases shortly after diabetes diagnosis, which is likely to be due to detection bias caused by increased ascertainment. Prevention of female breast and thyroid cancers should be paid attention in Chinese individuals with T2DM.

Open access

Zhen-yu Song, Qiuming Yao, Zhiyuan Zhuo, Zhe Ma and Gang Chen

Previous studies investigating the association of circulating 25-hydroxyvitamin D level with prognosis of prostate cancer yielded controversial results. We conducted a dose–response meta-analysis to elucidate the relationship. PubMed and EMBASE were searched for eligible studies up to July 15, 2018. We performed a dose–response meta-analysis using random-effect model to calculate the summary hazard ratio (HR) and 95% CI of mortality in patients with prostate cancer. Seven eligible cohort studies with 7808 participants were included. The results indicated that higher vitamin D level could reduce the risk of death among prostate cancer patients. The summary HR of prostate cancer-specific mortality correlated with an increment of every 20 nmol/L in circulating vitamin D level was 0.91, with 95% CI 0.87–0.97, P = 0.002. The HR for all-cause mortality with the increase of 20 nmol/L vitamin D was 0.91 (95% CI: 0.84–0.98, P = 0.01). Sensitivity analysis suggested the pooled HRs were stable and not obviously changed by any single study. No evidence of publications bias was observed. This meta-analysis suggested that higher 25-hydroxyvitamin D level was associated with a reduction of mortality in prostate cancer patients and vitamin D is an important protective factor in the progression and prognosis of prostate cancer.

Open access

Laura van Iersel, Sarah C Clement, Antoinette Y N Schouten-van Meeteren, Annemieke M Boot, Hedi L Claahsen-van der Grinten, Bernd Granzen, K Sen Han, Geert O Janssens, Erna M Michiels, A S Paul van Trotsenburg, W Peter Vandertop, Dannis G van Vuurden, Hubert N Caron, Leontien C M Kremer and Hanneke M van Santen

Objective

The incidence of cranial radiotherapy (cRT)–induced central hypothyroidism (TSHD) in childhood brain tumor survivors (CBTS) is reported to be low. However, TSHD may be more frequent than currently suspected, as its diagnosis is challenging due to broad reference ranges for free thyroxine (FT4) concentrations. TSHD is more likely to be present when FT4 levels progressively decline over time. Therefore, we determined the incidence and latency time of TSHD and changes of FT4 levels over time in irradiated CBTS.

Design

Nationwide, 10-year retrospective study of irradiated CBTS.

Methods

TSHD was defined as ‘diagnosed’ when FT4 concentrations were below the reference range with low, normal or mildly elevated thyrotropin levels, and as ‘presumed’ when FT4 declined ≥ 20% within the reference range. Longitudinal FT4 concentrations over time were determined in growth hormone deficient (GHD) CBTS with and without diagnosed TSHD from cRT to last follow-up (paired t-test).

Results

Of 207 included CBTS, the 5-year cumulative incidence of diagnosed TSHD was 20.3%, which occurred in 50% (25/50) of CBTS with GHD by 3.4 years (range, 0.9–9.7) after cRT. Presumed TSHD was present in 20 additional CBTS. The median FT4 decline in GH-deficient CBTS was 41.3% (P < 0.01) to diagnosis of TSHD and 12.4% (P= 0.02) in GH-deficient CBTS without diagnosed TSHD.

Conclusions

FT4 concentrations in CBTS significantly decline over time after cRT, also in those not diagnosed with TSHD, suggesting that TSHD occurs more frequently and earlier than currently reported. The clinical relevance of cRT-induced FT4 decline over time should be investigated in future studies.

Open access

Devis Pascut, Sofia Tamini, Silvia Bresolin, Pablo Giraudi, Giuseppe Basso, Alessandro Minocci, Claudio Tiribelli, Graziano Grugni and Alessandro Sartorio

Prader–Willi syndrome (PWS) represents the most common genetic-derived obesity disorder caused by the loss of expression of genes located on the paternal chromosome 15q11.2-q13. The PWS phenotype shows peculiar physical, endocrine and metabolic characteristics compared to those observed in non-syndromic essential obesity. Since miRNAs have now a well-established role in many molecular pathways, including regulatory networks related to obesity, this pilot study was aimed to characterize the expression of circulating miRNAs in PWS compared to essential obesity. The circulating miRNome of 10 PWS and 10 obese subjects, adequately matched for age, BMI and sex, was profiled throughout Genechip miRNA 4.0 microarray analysis. We identified 362 out of 2578 mature miRNAs to be expressed in serum of the studied population. The circulating miRNA signature significantly characterising the two populations include 34 differently expressed RNAs. Among them, miR-24-3p, miR-122 and miR-23a-3p highly differ between the two groups with a FC >10 in obese compared to PWS. In the obese subjects, miR-7107-5p, miR-6880-3p, miR-6793-3p and miR-4258 were associated to the presence of steatosis. A different signature of miRNAs significantly distinguished PWS with steatosis from PWS without steatosis, involving miR-619-5p, miR-4507, miR-4656, miR-7847-3p and miR-6782-5p. The miRNA target GO enrichment analysis showed the different pathway involved in these two different forms of obesity. Although the rarity of PWS actually represents a limitation to the availability of large series, the present study provides novel hints on the molecular pathogenesis of syndromic and non-syndromic obesity.

Open access

Legh Wilkinson, Nicolette J D Verhoog and Ann Louw

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM–SEDIGRAM concept to reduce the side-effect profile of GCs.

Open access

T P Parikh, B Stolze, Y Ozarda, J Jonklaas, K Welsh, L Masika, M Hill, A DeCherney and S J Soldin

Objective

Accurate measurement of steroid hormones remains challenging. Mass spectrometry affords a reliable means for quantitating steroid profiles accurately. Our objective was to establish and define (1) the extent of diurnal fluctuations in steroid concentrations that potentially necessitate strict adherence to time of sample acquisition and (2) time-dependent steroid reference intervals.

Design

Nine steroid markers were examined in couplets in males and females.

Methods

Using isotope dilution high-performance liquid chromatography–tandem mass spectrometric (LC–MS/MS) analysis, we developed a multi-steroid profile requiring only a minimal volume of serum (0.1 mL). Couplet (AM and PM) measurements of steroid hormones for 120 healthy females (F) and 62 healthy males (M) were obtained. Patients were recruited from several participating centers.

Results

The following diurnal values were noted to be significantly different in both females and males: cortisone, cortisol, corticosterone, 11 deoxycortisol (11 DOC), androstenedione, 17a-hydroxyprogesterone (17 OHP) and dehydroepiandrosterone (DHEA). Testosterone was only found to have significant diurnal variance in males. Progesterone showed no significant difference in AM and PM values for either groups and thus may provide an internal control.

Conclusions

When diagnosing endocrine disorders, it is imperative to acknowledge the 24-h diurnal variation of the biochemical steroid markers. We highlight the importance of standardization of collection times and appropriate implementation of reference intervals.

Precis

We identify diurnal fluctuations in steroid concentrations with time of day and emphasize the importance of adhering to firm time of sample acquisition.