Browse

You are looking at 21 - 30 of 793 items for

  • All content x
Clear All
Open access

Helle Keinicke, Gao Sun, Caroline M Junker Mentzel, Merete Fredholm, Linu Mary John, Birgitte Andersen, Kirsten Raun, and Marina Kjaergaard

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

Open access

Mai Morsi, Torben Schulze, Eike Früh, Dennis Brüning, Uwe Panten, and Ingo Rustenbeck

Observing different kinetics of nutrient-induced insulin secretion in fresh and cultured islets under the same condition we compared parameters of stimulus secretion coupling in freshly isolated and 22-h-cultured NMRI mouse islets. Stimulation of fresh islets with 30 mM glucose after perifusion without nutrient gave a continuously ascending secretion rate. In 22-h-cultured islets the same protocol produced a brisk first phase followed by a moderately elevated plateau, a pattern regarded to be typical for mouse islets. This was also the response of cultured islets to the nutrient secretagogue alpha-ketoisocaproic acid, whereas the secretion of fresh islets increased similarly fast but remained strongly elevated. The responses of fresh and cultured islets to purely depolarizing stimuli (tolbutamide or KCl), however, were closely similar. Signs of apoptosis and necrosis were rare in both preparations. In cultured islets, the glucose-induced rise of the cytosolic Ca2+ concentration started from a lower value and was larger as was the increase of the ATP/ADP ratio. The prestimulatory level of mitochondrial reducing equivalents, expressed as the NAD(P)H/FAD fluorescence ratio, was lower in cultured islets, but increased more strongly than in fresh islets. When culture conditions were modified by replacing RPMI with Krebs–Ringer medium and FCS with BSA, the amount of released insulin varied widely, but the kinetics always showed a predominant first phase. In conclusion, the secretion kinetics of fresh mouse islets is more responsive to variations of nutrient stimulation than cultured islets. The more uniform kinetics of the latter may be caused by a different use of endogenous metabolites.

Open access

Ailsa Maria Main, Maria Rossing, Line Borgwardt, Birgitte Grønkær Toft, Åse Krogh Rasmussen, and Ulla Feldt-Rasmussen

Phaeochromocytomas and paragangliomas (PPGLs) are tumours of the adrenal medulla and extra-adrenal sympathetic nervous system which often secrete catecholamines. Variants of the SDHX (SDHA, -AF2, -B, -C, -D) genes are a frequent cause of familial PPGLs. In this study from a single tertiary centre, we aimed to characterise the genotype–phenotype associations in patients diagnosed with germline variants in SDHX genes. We also assessed whether systematic screening of family members resulted in earlier detection of tumours. The study cohort comprised all individuals (n = 59) diagnosed with a rare variant in SDHX during a 13-year period. Patient- and pathology records were checked for clinical characteristics and histopathological findings. We found distinct differences in the clinical and histopathological characteristics between genetic variants in SDHB. We identified two SDHB variants with distinct phenotypical patterns. Family screening for SDHB variants resulted in earlier detection of tumours in two families. Patients with SDHA, SDHC and SDHD variants also had malignant phenotypes, underlining the necessity for a broad genetic screening of the proband. Our study corroborates previous findings of poor prognostic markers and found that the genetic variants and clinical phenotype are linked and, therefore, useful in the decision of clinical follow-up. Regular tumour screening of carriers of pathogenic variants may lead to an earlier diagnosis and expected better prognosis. The development of a combined algorithm with clinical, genetic, morphological, and biochemical factors may be the future for improved clinical risk stratification, forming a basis for larger multi-centre follow up studies.

Open access

Kristian Almstrup, Hanne Frederiksen, Anna-Maria Andersson, and Anders Juul

Puberty marks a transition period, which leads to the attainment of adult sexual maturity. Timing of puberty is a strongly heritable trait. However, large genetic association studies can only explain a fraction of the observed variability and striking secular trends suggest that lifestyle and/or environmental factors are important. Using liquid-chromatography tandem-mass-spectrometry, we measured endocrine-disrupting chemicals (EDCs; triclosan, bisphenol A, benzophenone-3, 2,4-dichlorophenol, 11 metabolites from 5 phthalates) in longitudinal urine samples obtained biannually from peri-pubertal children included in the COPENHAGEN puberty cohort. EDC levels were associated with blood DNA methylation profiles from 31 boys and 20 girls measured both pre- and post-pubertally. We found little evidence of single methylation sites that on their own showed association with urinary excretion levels of EDCs obtained either the same-day or measured as the yearly mean of dichotomized EDC levels. In contrast, methylation of several promoter regions was found to be associated with two or more EDCs, overlap with known gene–chemical interactions, and form a core network with genes known to be important for puberty. Furthermore, children with the highest yearly mean of dichotomized urinary phthalate metabolite levels were associated with higher promoter methylation of the thyroid hormone receptor interactor 6 gene (TRIP6), which again was mirrored by lower circulating TRIP6 protein levels. In general, the mean TRIP6 promoter methylation was mirrored by circulating TRIP6 protein levels. Our results provide a potential molecular mode of action of how exposure to environmental chemicals may modify pubertal development.

Open access

Salem A Beshyah, Khawla F Ali, and Hussein F Saadi

Introduction:

Appropriate dose adjustments of glucocorticoids replacement therapy for adrenal insufficiency (AI) is vital.

Objective:

We sought to scope physicians’ perceptions, and practices regarding Ramadan fasting (RF) impact on the management of AI.

Methods:

A web-based survey of a convenience sample of endocrinologists.

Results:

Nearly two-thirds of 145 respondents (64.1%) were adult endocrinologists and almost half (49%) saw more than 10 hypoadrenal patients per year. Most respondents (78.6%) prescribed hydrocortisone, while the minority prescribed other preparations. The glucocorticoid doses were reportedly divided twice daily by 70.8% and thrice daily by 22.2% of respondents. Respondents recognized RF as having potential consequences in adrenal insufficiency patients included causing hypoglycaemia, undue tiredness, and fatigue, hypotension, feeling dizzy, and light-headedness. Symptoms of under-replacement were thought to happen in the late afternoon by 59.3% of respondents. Almost half (45.5%) of respondents thought that RF has some probable or definite impact on glucocorticoid therapy that certainly warrants specific concern and possible action. Three quarters (76.4%) of respondents confirmed providing specific management recommendations during RF. The most frequently reported recommendation was taking in the usual morning dose of hydrocortisone just before pre-dawn meal (Suhor) (57.8%). A third switch patients from hydrocortisone to prednisolone/prednisone. Half reported providing patients with specific recommendations regarding breaking their fast and/or seeking help if hypoadrenal symptoms occur.

Conclusions:

There is a remarkable variation in the physicians’ perceptions and practices regarding the management of AI during Ramadan. This warrants professional effort to increase the awareness and dissemination of evidence-based guidelines.

Open access

David T Broome, Gauri B Gadre, Ehsan Fayazzadeh, James F Bena, and Christian Nasr

Objective:

To identify novel prognostic risk factors and compare them with other known prognostic risk factors in follicular-cell-derived thyroid carcinoma (FDTC) with distant metastases.

Methods:

A retrospective review was conducted of adult patients with metastatic FDTC seen at a tertiary care center between January 1990 and December 2010. A 15-year Kaplan–Meier survival estimate was created for overall survival (OS) and cancer-specific survival (CSS). Hazard ratios (HR) and P values from Cox proportional hazard models were used with a 95% CI.

Results:

There were 143 patients (60.1% male, 39.9% female), of whom 104 (72.7%) patients had papillary, 30 (21.0%) had follicular, 5 (3.5%) had poorly differentiated, and 4 (2.8%) had Hürthle cell cancers. Median length of follow-up was 80.0 months (range 1.0–564.0). The 15-year mortality rate was 32.2% and cancer-specific mortality was 25.2%, with OS and CSS having the same risk factors. Lung was the most common site of metastases in 53 patients (37.1%), and patients with pleural effusions had significantly lower CSS (HR = 5.21, CI = 1.79–15.12). Additional risk factors for a decreased CSS included: older age upon diagnosis (>45 years, HR = 4.15, CI = 1.43–12.02), multiple metastatic locations (HR = 3.75, CI = 1.32–10.67), and incomplete/unknown tumor resection (HR = 2.35, CI = 1.18–4.67).

Conclusion:

This study is the first to demonstrate that pleural effusion is a poor prognostic sign in patients with FDTC with distant metastases and compare this risk with other accepted prognostic variables.

Open access

Abdul K Siraj, Rong Bu, Maham Arshad, Kaleem Iqbal, Sandeep Kumar Parvathareddy, Tariq Masoodi, Laila Omar Ghazwani, Saif Al-Sobhi, Fouad Al-Dayel, and Khawla S Al-Kuraya

Thyroid cancer is the most frequent endocrine cancer with an increasing incidence rate worldwide and is the second most common malignancy among females in Saudi Arabia. Papillary thyroid cancer (PTC) is the most common subtype. Germline pathogenic variants in the proofreading domain of the POLE and POLD1 genes predispose to several types of cancers. However, the role of pathogenic variants of these two genes in PTC remains unknown. Capture sequencing, Sanger sequencing and Immunohistochemistry were performed on 300 PTC cases from the Middle Eastern region. One germline pathogenic variant each of POLE (1/300, 0.33%) and POLD1 (1/300, 0.33%) genes was identified. Low expression of POLD1 was detected in 46.5% (133/286) of cases and was significantly associated with the follicular variant of PTC (p=0.0006), distant metastasis (p=0.0033) and stage IV tumors (p=0.0081). However, no somatic pathogenic variant was detected in POLE gene. Furthermore, low expression of POLE was noted in 61.7% (175/284) of cases with no significant clinico-pathological associations. Our study shows that pathogenic variant in the POLE and POLD1 proofreading domain is a cause of PTC and low expression of POLD1 is associated with poor prognostic markers in the Middle Eastern population. Further studies from different geographic populations are needed to determine the frequency and spectrum of proofreading domain pathogenic variants in POLE and POLD1 genes and in PTC from different ethnicities.

Open access

Shufei Zang, Lei Shi, Jinying Zhao, Min Yang, Jun Liu, and Heyuan Ding

The aim of our study was to explore the diagnostic value of prealbumin to fibrinogen ratio (PFR) for predicting prognosis with the optimal cut-off value in diabetic peripheral neuropathy (DPN) patients. A total of 568 type 2 diabetes mellitus (T2DM) patients were enrolled in this study. The values including Toronto clinical neuropathy score (TCNS), nerve conduction velocity (NCV), vibration perception threshold (VPT), blood cells count, biochemical parameters, fibrinogen and PFR were recorded. The patients were divided into tertiles based on admission PFR value. First, clinical parameters were compared among the groups. Secondly, a logistic regression and ROC analysis were performed as the statistical model. The percentage of DPN, TCNS and VPT were significantly higher in the lowest PFR tertile than in the middle PFR tertile and the highest PFR tertile (P < 0.01–0.001). NCV was significantly lower in lowest PFR tertile than in the middle PFR tertile and the highest PFR tertile (P < 0.01–0.001). The Spearman correlation analysis showed that PFR was negatively correlated with TCNS and VPT (P < 0.001), while PFR was positively correlated with median motor NCV (P < 0.001), peroneal motor NCV (P < 0.001), median sensory NCV (P < 0.001), and peroneal sensory NCV (P < 0.001). After adjusting these potentially related factors, PFR was independently related to DPN (P = 0.007). The area under ROC curve was 0.627. This study finds the first evidence to suggest PFR may be the key component associated with DPN in T2DM, while PFR might underlie the pathophysiologic features of DPN.

Open access

Myrian Velasco, Rosa Isela Ortiz-Huidobro, Carlos Larqué, Yuriko Itzel Sánchez-Zamora, José Romo-Yáñez, and Marcia Hiriart

Objective: We assessed the sex-specific differences in the molecular mechanisms of insulin resistance in muscle and adipose tissue, in a MS rat model induced by a high sucrose diet.

Methods: Male, female, and ovariectomized female Wistar rats were randomly distributed in control and high-sucrose diet (HSD) groups, supplemented for 24 weeks with 20% sucrose in the drinking water. At the end, we assessed parameters related to MS, analyzing the effects of the HSD on critical nodes of the insulin signaling pathway in muscle and adipose tissue.

Results: At the end of treatment, HSD groups of both sexes developed obesity, with a 15%, 33% and 23% of body weight gain, in male, female, and OVX groups respectively, compared with controls; mainly related to hypertrophy of peripancreatic and gonadal adipose tissue. They also developed hypertriglyceridemia, and liver steatosis, with the last being worse in the HSD females. Compared to the control groups, HSD rats had higher IL-1β and TNFα levels and insulin resistance. HSD females were more intolerant to glucose than HSD males. Our observations suggest that insulin resistance mechanisms, include an increase in phosphorylated Akt(S473) form in HSD male and female groups, and a decrease in phosphorylated P70S6K1(T389) in the HSD male groups from peripancreatic adipose tissue. While in gonadal adipose tissue the phosphorylated form of Akt decreased in HSD females, but not in HSD males. Finally, HSD groups showed a reduction in p-Akt levels in gastrocnemius muscle.

Conclusion: A high-sucrose diet induces MS and insulin resistance with sex-associated differences and in a tissue-specific manner.

Open access

Jana Ernst, Katharina Gert, Frank Bernhard Kraus, Ulrike Elisabeth Rolle-Kampczyk, Martin Wabitsch, Faramarz Dehghani, and Kristina Schaedlich

The rapid increase of obesity during the last decades and its future prospects are alarming. Besides the general discussed causes of obesity, the ‘Developmental Origins of Health and Disease’ (DOHaD) hypothesis received more attention in recent years. This hypothesis postulates an adverse influence during early development that programs the unborn child for metabolic dysfunctions later in life. Childhood obesity – an as much increasing problem – can be predisposed by maternal overweight and diabetes. Both, obesity and hyperinsulinemia are major causes of female hyperandrogenemia. As predicted by the DOHaD hypothesis and shown in animal models, developmental androgen excess can lead to metabolic abnormalities in offspring. In this study, we investigated, if androgen exposure adversely affects the adipogenic differentiation of preadipocytes and the endocrine function of adult adipocytes. The human SGBS preadipocyte model was used to affirm the de novo biosynthesis of steroid hormones under normal adipogenesis conditions. Normal adipogenesis was paralleled by an increase of corticosteroids and androgens, whereas estrogen remained at a steady level. Treatment with androstenedione had no effect on SGBS proliferation and differentiation, but adult adipocytes exhibited a significant higher accumulation of triglycerides. Progesterone (up to 2-fold), testosterone (up to 38-fold) and cortisone (up to 1.4-fold) – but not cortisol – were elevated by androstenedione administration in adult adipocytes. Estrogen was not altered. Data suggest that androgen does not negatively influence adipogenic differentiation, but steroidogenic function of SGBS adipocytes.