Browse

You are looking at 11 - 20 of 23 items for :

  • Paediatric Endocrinology x
Clear All
Wolfgang Högler Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Search for other papers by Wolfgang Högler in
Google Scholar
PubMed
Close
,
Agnès Linglart AP-HP, Hôpital Bicêtre Paris Saclay, service d’endocrinologie et diabète de l’enfant, DMU 3 SEA, centre de référence des maladies rares du métabolisme du calcium et du phosphate, filière OSCAR; Université de Paris-Saclay INSERM U1185, Hôpital Bicêtre, Le Kremlin-Bicêtre, France

Search for other papers by Agnès Linglart in
Google Scholar
PubMed
Close
,
Anna Petryk Alexion, AstraZeneca Rare Disease, Boston, Massachusetts, USA

Search for other papers by Anna Petryk in
Google Scholar
PubMed
Close
,
Priya S Kishnani Duke University Medical Center, Durham, North Carolina, USA

Search for other papers by Priya S Kishnani in
Google Scholar
PubMed
Close
,
Lothar Seefried University of Würzburg, Würzburg, Germany

Search for other papers by Lothar Seefried in
Google Scholar
PubMed
Close
,
Shona Fang Alexion, AstraZeneca Rare Disease, Boston, Massachusetts, USA

Search for other papers by Shona Fang in
Google Scholar
PubMed
Close
,
Cheryl Rockman-Greenberg University of Manitoba, Winnipeg, Manitoba, Canada

Search for other papers by Cheryl Rockman-Greenberg in
Google Scholar
PubMed
Close
,
Keiichi Ozono Osaka University, Suita, Osaka, Japan

Search for other papers by Keiichi Ozono in
Google Scholar
PubMed
Close
,
Kathryn Dahir Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Kathryn Dahir in
Google Scholar
PubMed
Close
, and
Gabriel Ángel Martos-Moreno Departments of Pediatrics and Pediatric Endocrinology Hospital Infantil Universitario Niño Jesús, IIS La Princesa, Universidad Autónoma de Madrid, CIBERobn, ISCIII, Madrid, Spain

Search for other papers by Gabriel Ángel Martos-Moreno in
Google Scholar
PubMed
Close

Objective

Hypophosphatasia, an inborn error of metabolism characterized by impaired bone mineralization, can affect growth. This study evaluated relationships between anthropometric parameters (height, weight, and body mass index) and clinical manifestations of hypophosphatasia in children.

Design

Data from children (aged <18 years) with hypophosphatasia were analyzed from the observational Global Hypophosphatasia Registry.

Methods

Anthropometric parameters were evaluated by age group (<2 years and ≥2 years) at assessment. The frequency of hypophosphatasia manifestations was compared between children with short stature (< percentile) and those with normal stature.

Results

This analysis included 215 children (54.4% girls). Short stature presented in 16.1% of children aged <2 years and 20.4% of those aged ≥2 years at assessment. Among those with available data (n = 62), height was below the target height (mean: −0.66 standard deviations). Substantial worsening of growth (mean delta height z score: −1.45; delta weight z score: −0.68) occurred before 2 years of age, while in those aged ≥2 years, anthropometric trajectories were maintained (delta height z score: 0.08; delta weight z score: 0.13). Broad-ranging hypophosphatasia manifestations (beyond dental) were observed in most children.

Conclusions

Short stature was not a consistent characteristic of children with hypophosphatasia, but growth impairment was observed in those aged <2 years, indicating that hypophosphatasia might affect growth plate activity during infancy. In addition, a broad range of clinical manifestations occurred in those above and below the third percentile for height, suggesting that height alone may not accurately reflect hypophosphatasia disease burden and that weight is less affected than longitudinal growth.

Open access
Sommayya Aftab Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK

Search for other papers by Sommayya Aftab in
Google Scholar
PubMed
Close
,
Diliara Gubaeva Department of Paediatric Endocrinology, Endocrinology Research Centre, Moscow, Russia

Search for other papers by Diliara Gubaeva in
Google Scholar
PubMed
Close
,
Jayne A L Houghton The Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK

Search for other papers by Jayne A L Houghton in
Google Scholar
PubMed
Close
,
Antonia Dastamani Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK

Search for other papers by Antonia Dastamani in
Google Scholar
PubMed
Close
,
Ellada Sotiridou Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK

Search for other papers by Ellada Sotiridou in
Google Scholar
PubMed
Close
,
Clare Gilbert Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK

Search for other papers by Clare Gilbert in
Google Scholar
PubMed
Close
,
Sarah E Flanagan Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK

Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Close
,
Anatoly Tiulpakov Department of Paediatric Endocrinology, Endocrinology Research Centre, Moscow, Russia

Search for other papers by Anatoly Tiulpakov in
Google Scholar
PubMed
Close
,
Maria Melikyan Department of Paediatric Endocrinology, Endocrinology Research Centre, Moscow, Russia

Search for other papers by Maria Melikyan in
Google Scholar
PubMed
Close
, and
Pratik Shah Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK

Search for other papers by Pratik Shah in
Google Scholar
PubMed
Close

Background

Hyperinsulinism/hyperammonemia (HI/HA) syndrome is the second most common type of congenital hyperinsulinism caused by an activating GLUD1 mutation.

Objective

The aim of this study was to determine the clinical profile and long-term neurological outcomes in children with HI/HA syndrome.

Method

This study is a retrospective review of patients with GLUD1 mutation, treated at two centers in the UK and Russia, over a 15-year period. Different risk factors for neuro-developmental disorders were analysed by Mann–Whitney U test and Fisher’s exact P test.

Results

We identified 25 cases with GLUD1 mutations (12 males). Median age of presentation was 7 months (12 h–18 months). Hypoglycaemic seizures were the presenting feature in 24 (96%) cases. Twenty four cases responded to diazoxide and protein restriction whilst one patient underwent partial pancreatectomy. In total, 13 cases (52%) developed neurodevelopmental manifestations. Epilepsy (n = 9/25, 36%), learning difficulties (n = 8/25, 32%) and speech delay (n = 8/25, 32%) were the most common neurological manifestation. Median age of presentation for epilepsy was 12 months with generalised tonic-clonic seizures being the most common (n = 4/9, 44.4%) followed by absence seizures (n = 3/9, 33.3%). Early age of presentation (P = 0.02), diazoxide dose (P = 0.04) and a mutation in exon 11 or 12 (P = 0.01) were associated with neurological disorder.

Conclusion

HI/HA syndrome is associated with wide spectrum of neurological disorders. These neurological manifestations were more frequent in cases with mutations affecting the GTP-binding site of GLUD1 in our cohort.

Open access
Régis Coutant Department of Pediatric Endocrinology and Diabetology, Reference Center for Rare Pituiatry Diseases, University Hospital of Angers, Angers, France

Search for other papers by Régis Coutant in
Google Scholar
PubMed
Close
,
Maithé Tauber Reference Center for the Prader-Willi syndrome and other rare obesities with feeding disorders (PRADORT), Children Hospital, CHU Toulouse, Toulouse, France
Pediatric team of the Clinical Investigation Center 9302/INSERM, Hospital of Children, Toulouse, France
Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France

Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Close
,
Béatrice Demaret GRANDIR - French Growth Disorders Association, Asnières-sur-Seine, France

Search for other papers by Béatrice Demaret in
Google Scholar
PubMed
Close
,
Robin Henocque Pfizer France, Paris France

Search for other papers by Robin Henocque in
Google Scholar
PubMed
Close
,
Yves Brault Pfizer France, Paris France

Search for other papers by Yves Brault in
Google Scholar
PubMed
Close
,
François Montestruc eXYSTAT, Malakoff, France

Search for other papers by François Montestruc in
Google Scholar
PubMed
Close
,
Olivier Chassany Health Economics Clinical Trial Unit (URC-ECO), Hospital of Hotel-Dieu, AP-HP, Paris, France
Patient-Reported Outcomes Unit (PROQOL), UMR 1123, University Paris Cité, INSERM, Paris, France

Search for other papers by Olivier Chassany in
Google Scholar
PubMed
Close
,
Michel Polak Hôpital Universitaire Necker Enfants Malades, Pediatric Endocrinology, Gynecology and Diabetology, Imagine Institute, INSERM U1163, Cochin Institute, INSERM U1016, Centre de référence des pathologies endocriniennes rares de la croissance et du développement, Université de Paris Cité, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close
, and
the QOLITHOR Study Group
Search for other papers by the QOLITHOR Study Group in
Google Scholar
PubMed
Close
the QOLITHOR Study Group

Objective

The objective of this study was to describe in a real-life setting the treatment burden and adherence and quality of life (QOL) of children treated with daily injections of growth hormone and their relationship with treatment duration.

Design

This non-interventional, multicenter, cross-sectional French study involved children aged 3–17 years treated with daily growth hormone injections.

Methods

Based on a recent validated dyad questionnaire, the mean overall life interference total score (100 = most interference) was described, with treatment adherence and QOL, using the Quality of Life of Short Stature Youth questionnaire (100 = best). All analyses were performed according to treatment duration prior to inclusion.

Results

Among the 275/277 analyzed children, 166 (60.4%) had only growth hormone deficiency (GHD). In the GHD group, the mean age was 11.7 ± 3.2 years; median treatment duration was 3.3 years (interquartile range 1.8–6.4). The mean overall life interference total score was 27.7 ± 20.7 (95% CI (24.2; 31.2)), with non-significant correlation with treatment duration (P = 0.1925). Treatment adherence was good (95.0% of children reported receiving >80% of planned injections over the last month); it slightly decreased with treatment duration (P = 0.0364). Children’s overall QOL was good (81.5 ± 16.6 and 77.6 ± 18.7 according to children and parents, respectively), but subscores of the coping and treatment impact domains were <50. Similar results were observed in all patients independently of the condition requiring treatment.

Conclusions

This real-life French cohort confirms the treatment burden of daily growth hormone injections, as previously reported in an interventional study.

Open access
Marie Lindhardt Ljubicic Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
Close
,
Trine Holm Johannsen Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Close
,
Margit Bistrup Fischer Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Margit Bistrup Fischer in
Google Scholar
PubMed
Close
,
Emmie N Upners Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Emmie N Upners in
Google Scholar
PubMed
Close
,
Alexander S Busch Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Alexander S Busch in
Google Scholar
PubMed
Close
,
Katharina M Main Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Katharina M Main in
Google Scholar
PubMed
Close
,
Anna-Maria Andersson Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
Close
,
Casper P Hagen Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Casper P Hagen in
Google Scholar
PubMed
Close
, and
Anders Juul Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close

The ratio between luteinizing hormone (LH) and follicle-stimulating hormone (FSH) has previously been described as an excellent marker of sex in healthy infants. However, LH/FSH remains not fully described in patients with differences of sex development (DSD). The aim was therefore to describe LH/FSH in infants with DSD. This was a retrospective study of DSD patients, all aged 0–1.2 years. In total, 87 infants with DSD and at least one serum sample per infant were included. Longitudinal samples from single patients were included whenever possible. Serum LH/FSH ratios in these patients were plotted against recently published age-related and sex-dimorphic cutoffs. Overall, LH/FSH sometimes corresponded to assigned sex without any obvious pattern in terms of diagnoses. LH/FSH corresponded to the biological sex in all patients with Turner or Klinefelter syndrome. In patients with 46,XX or 46,XY DSD (except congenital adrenal hyperplasia (CAH)), the ratios did not correspond to the assigned sex in all cases and were interchangeably within the male and female range. In patients with CAH, the ratio corresponded to biological sex (based on sex chromosomes) in some cases but also ranged across the cutoffs. In the 15 patients with 45,X/46,XY mosaicism, the LH/FSH ratios corresponded to the assigned sex in all cases (12 were raised as males, 3 as females) and at all time points in cases with multiple sampling. While this study describes LH/FSH in infants with DSD, the exact clinical role of the ratio in the management of these patients remains to be further elucidated.

Open access
Christine Poitou Assistance Publique-Hôpitaux de Paris, Centre de référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et autres formes rares d’obésité avec troubles du comportement alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France

Search for other papers by Christine Poitou in
Google Scholar
PubMed
Close
,
Anthony Holland Department of Psychiatry, University of Cambridge, UK

Search for other papers by Anthony Holland in
Google Scholar
PubMed
Close
,
Charlotte Höybye Department of Endocrinology and Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Laura C G de Graaff Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands

Search for other papers by Laura C G de Graaff in
Google Scholar
PubMed
Close
,
Sandrine Bottius Assistance Publique-Hôpitaux de Paris, Centre de référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et autres formes rares d’obésité avec troubles du comportement alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, Paris, France

Search for other papers by Sandrine Bottius in
Google Scholar
PubMed
Close
,
Berit Otterlei Landsforeningen for Prader-Willis Syndrom Hiltonåsen, Slependen, Norway

Search for other papers by Berit Otterlei in
Google Scholar
PubMed
Close
, and
Maithé Tauber Centre de référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et autres formes rares d’obésité avec troubles du comportement alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, Toulouse, France

Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Close

Prader–Willi syndrome (PWS), the most common form of syndromic obesity, is a complex neurodevelopmental genetic disorder including obesity with hyperphagia, endocrine and metabolic disorders and also psychiatric disorders. The most frequent endocrine disturbances include hypogonadism and growth hormone (GH) deficiency. Hypothyroidism and central adrenal insufficiency can also be observed but are less frequent. The transition of individuals with PWS from adolescence to adult life is challenging because of multiple comorbidities and complex disabilities. Individuals and caregivers face psychological, medical and social issues. This period of profound changes is thus prone to disruptions, and the main risks being the worsening of the medical situation and loss to follow-up of the individuals. Medical care may be poorly adapted to the needs of individuals because of a lack of knowledge concerning the syndrome and also lack of the necessary specific skills. A multidisciplinary panel composed of several experts in PWS met in November 2021 during an European Reference Network on Rare Endocrine Conditions (Endo-ERN) webinar. They presented complementary aspects of PWS from the perspective of the transition including psychiatric, pediatric and adult endocrinological and parent’s and patient’s points of view and shed light on the best way to approach this pivotal period.

Open access
Nathalia Liberatoscioli Menezes Andrade Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil

Search for other papers by Nathalia Liberatoscioli Menezes Andrade in
Google Scholar
PubMed
Close
,
Mariana Ferreira de Assis Funari Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil

Search for other papers by Mariana Ferreira de Assis Funari in
Google Scholar
PubMed
Close
,
Alexsandra Christianne Malaquias Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil

Search for other papers by Alexsandra Christianne Malaquias in
Google Scholar
PubMed
Close
,
Paulo Ferrez Collett-Solberg Disciplina de Endocrinologia, Departamento de Medicina Interna, Faculdade de Ciências Medicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil

Search for other papers by Paulo Ferrez Collett-Solberg in
Google Scholar
PubMed
Close
,
Nathalia L R A Gomes Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil

Search for other papers by Nathalia L R A Gomes in
Google Scholar
PubMed
Close
,
Renata Scalco Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil

Search for other papers by Renata Scalco in
Google Scholar
PubMed
Close
,
Naiara Castelo Branco Dantas Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil

Search for other papers by Naiara Castelo Branco Dantas in
Google Scholar
PubMed
Close
,
Raissa C Rezende Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil

Search for other papers by Raissa C Rezende in
Google Scholar
PubMed
Close
,
Angelica M F P Tiburcio Serviço de Endocrinologia, Unidade de Crescimento, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brasil

Search for other papers by Angelica M F P Tiburcio in
Google Scholar
PubMed
Close
,
Micheline A R Souza Serviço de Endocrinologia do Instituto de Puericultura e Pediatria Martagao Gesteira/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Search for other papers by Micheline A R Souza in
Google Scholar
PubMed
Close
,
Bruna L Freire Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil

Search for other papers by Bruna L Freire in
Google Scholar
PubMed
Close
,
Ana C V Krepischi Centro de Pesquisa em Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de Sao Paulo, São Paulo, Brasil

Search for other papers by Ana C V Krepischi in
Google Scholar
PubMed
Close
,
Carlos Alberto Longui Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil

Search for other papers by Carlos Alberto Longui in
Google Scholar
PubMed
Close
,
Antonio Marcondes Lerario Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Antonio Marcondes Lerario in
Google Scholar
PubMed
Close
,
Ivo J P Arnhold Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil

Search for other papers by Ivo J P Arnhold in
Google Scholar
PubMed
Close
,
Alexander A L Jorge Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil

Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Close
, and
Gabriela Andrade Vasques Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, Brasil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil

Search for other papers by Gabriela Andrade Vasques in
Google Scholar
PubMed
Close

Objective

Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS.

Design and methods

We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools.

Results

We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n  = 4), SHOX (n  = 3), FGFR3 (n  = 2), NPR2 (n  = 2), ACAN (n  = 2), and COL2A1 (n  = 1) or involved in the RAS/MAPK pathway: NF1 (n  = 2), PTPN11 (n  = 1), CBL (n  = 1), and BRAF (n  = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > −3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children.

Conclusion

A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.

Open access
Luca Persani Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy

Search for other papers by Luca Persani in
Google Scholar
PubMed
Close
,
Martine Cools Departments of Internal Medicine and Paediatrics and of Paediatric Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Martine Cools in
Google Scholar
PubMed
Close
,
Stamatina Ioakim Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Close
,
S Faisal Ahmed Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom

Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Close
,
Silvia Andonova National Genetic Laboratory, UHOG “Maichin dom", Medical University, Sofia, Bulgaria

Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Close
,
Magdalena Avbelj-Stefanija Department for Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Close
,
Federico Baronio Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy

Search for other papers by Federico Baronio in
Google Scholar
PubMed
Close
,
Jerome Bouligand Université Paris-Saclay, Inserm UMRS1185 & Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, France

Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Close
,
Hennie T Bruggenwirth Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Close
,
Justin H Davies Faculty of Medicine, University of Southampton, Southampton, United Kingdom

Search for other papers by Justin H Davies in
Google Scholar
PubMed
Close
,
Elfride De Baere Departments of Internal Medicine and Paediatrics and of Paediatric Endocrinology, Ghent University Hospital, Ghent, Belgium

Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Close
,
Iveta Dzivite-Krisane Children’s University Hospital, Riga, Latvia

Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Close
,
Paula Fernandez-Alvarez Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain

Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Close
,
Alexander Gheldof Center for Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium

Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Close
,
Claudia Giavoli Unit of Endocrinology, Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy

Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Close
,
Claus H Gravholt Departments of Endocrinology, of Clinical Medicine and of Molecular Medicine, Aarhus University, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
,
Olaf Hiort University Hospital Schleswig-Holstein, Campus Lübeck, and University of Lübeck, Lübeck, Germany

Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Close
,
Paul-Martin Holterhus University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany

Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Close
,
Anders Juul Departments of Growth and Reproduction and of Clinical Medicine, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close
,
Csilla Krausz Endocrinology and Andrology Units, University Hospital of Careggi and Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy

Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Close
,
Kristina Lagerstedt-Robinson Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
Close
,
Ruth McGowan Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom

Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Close
,
Uta Neumann Charité Medicine University, Berlin, Germany

Search for other papers by Uta Neumann in
Google Scholar
PubMed
Close
,
Antonio Novelli Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy

Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Close
,
Xavier Peyrassol Universitè Libre di Bruxelles, Brussels, Belgium

Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Close
,
Leonidas A Phylactou Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Close
,
Julia Rohayem University Hospital Münster, Munster, Germany

Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Close
,
Philippe Touraine Center for Rare Endocrine and Gynecological Disorders, Department of endocrinology and reproductive Medicine, Hospital Pitié Salpêtrière, Paris, France

Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Close
,
Dineke Westra Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by Dineke Westra in
Google Scholar
PubMed
Close
,
Valeria Vezzoli Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy

Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Close
, and
Raffaella Rossetti Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy

Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
Close

Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11–490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.

Open access
Danielle Christine Maria van der Kaay Erasmus University Medical Center, Department of Pediatrics, Subdivision of Endocrinology, Rotterdam, Netherlands

Search for other papers by Danielle Christine Maria van der Kaay in
Google Scholar
PubMed
Close
,
Anne Rochtus Department of Pediatric Endocrinology, University Hospitals Leuven, Leuven, Belgium

Search for other papers by Anne Rochtus in
Google Scholar
PubMed
Close
,
Gerhard Binder University Children’s Hospital, Pediatric Endocrinology, University of Tübingen, Tübingen, Germany

Search for other papers by Gerhard Binder in
Google Scholar
PubMed
Close
,
Ingo Kurth Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany

Search for other papers by Ingo Kurth in
Google Scholar
PubMed
Close
,
Dirk Prawitt Center for Paediatrics and Adolescent Medicine, University Medical Center, Mainz, Germany

Search for other papers by Dirk Prawitt in
Google Scholar
PubMed
Close
,
Irène Netchine Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France

Search for other papers by Irène Netchine in
Google Scholar
PubMed
Close
,
Gudmundur Johannsson Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Department of Endocrinology at Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Close
,
Anita C S Hokken-Koelega Erasmus University Medical Center, Department of Pediatrics, Subdivision of Endocrinology, Rotterdam, Netherlands

Search for other papers by Anita C S Hokken-Koelega in
Google Scholar
PubMed
Close
,
Miriam Elbracht Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany

Search for other papers by Miriam Elbracht in
Google Scholar
PubMed
Close
, and
Thomas Eggermann Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany

Search for other papers by Thomas Eggermann in
Google Scholar
PubMed
Close

The implementation of high-throughput and deep sequencing methods in routine genetic diagnostics has significantly improved the diagnostic yield in patient cohorts with growth disturbances and becomes increasingly important as the prerequisite of personalized medicine. They provide considerable chances to identify even rare and unexpected situations; nevertheless, we must be aware of their limitations. A simple genetic test in the beginning of a testing cascade might also help to identify the genetic cause of specific growth disorders. However, the clinical picture of genetically caused growth disturbance phenotypes can vary widely, and there is a broad clinical overlap between different growth disturbance disorders. As a consequence, the clinical diagnosis and therewith connected the decision on the appropriate genetic test is often a challenge. In fact, the clinician asking for genetic testing has to weigh different aspects in this decision process, including appropriateness (single gene test, stepwise procedure, comprehensive testing), turnaround time as the basis for rapid intervention, and economic considerations. Therefore, a frequent question in that context is ‘what to test when’. In this review, we aim to review genetic testing strategies and their strengths and limitations and to raise awareness for the future implementation of interdisciplinary genome medicine in diagnoses, treatment, and counselling of growth disturbances.

Open access
Martin Bidlingmaier Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians University, Munich, Germany

Search for other papers by Martin Bidlingmaier in
Google Scholar
PubMed
Close
,
Helena Gleeson Department of Endocrinology, Queen Elizabeth Hospital, Birmingham, UK

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
Ana-Claudia Latronico Department of Internal Medicine, Discipline of Endocrinology and Metabolism, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Brazil

Search for other papers by Ana-Claudia Latronico in
Google Scholar
PubMed
Close
, and
Martin O Savage Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK

Search for other papers by Martin O Savage in
Google Scholar
PubMed
Close

Precision medicine employs digital tools and knowledge of a patient’s genetic makeup, environment and lifestyle to improve diagnostic accuracy and to develop individualised treatment and prevention strategies. Precision medicine has improved management in a number of disease areas, most notably in oncology, and it has the potential to positively impact others, including endocrine disorders. The accuracy of diagnosis in young patients with growth disorders can be improved by using biomarkers. Insulin-like growth factor I (IGF-I) is the most widely accepted biomarker of growth hormone secretion, but its predictive value for recombinant human growth hormone treatment response is modest and various factors can affect the accuracy of IGF-I measurements. These factors need to be taken into account when considering IGF-I as a component of precision medicine in the management of growth hormone deficiency. The use of genetic analyses can assist with diagnosis by confirming the aetiology, facilitate treatment decisions, guide counselling and allow prompt intervention in children with pubertal disorders, such as central precocious puberty and testotoxicosis. Precision medicine has also proven useful during the transition of young people with endocrine disorders from paediatric to adult services when patients are at heightened risk of dropping out from medical care. An understanding of the likelihood of ongoing GH deficiency, using tools such as MRI, detailed patient history and IGF-I levels, can assist in determining the need for continued recombinant human growth hormone treatment during the process of transitional care.

Open access
Martijn J J Finken Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Close
,
Aleid J G Wirix Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Aleid J G Wirix in
Google Scholar
PubMed
Close
,
Ines A von Rosenstiel-Jadoul Department of Pediatrics, Rijnstate Hospital, Arnhem, The Netherlands

Search for other papers by Ines A von Rosenstiel-Jadoul in
Google Scholar
PubMed
Close
,
Bibian van der Voorn Department of Pediatric Endocrinology and Obesity Center CGG, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands

Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Close
,
Mai J M Chinapaw Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Mai J M Chinapaw in
Google Scholar
PubMed
Close
,
Michaela F Hartmann Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Department of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Close
,
Joana E Kist-van Holthe Department of Public and Occupational Health, EMGO Institute for Health and Care Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Joana E Kist-van Holthe in
Google Scholar
PubMed
Close
,
Stefan A Wudy Steroid Research and Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Department of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Close
, and
Joost Rotteveel Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Close

Objective

Childhood obesity is associated with alterations in hypothalamus–pituitary–adrenal axis activity. We tested the hypothesis that multiple alterations in the metabolism of glucocorticoids are required for the development of hypertension in children who become overweight.

Methods

Spot urine for targeted gas chromatography-mass spectrometry steroid metabolome analysis was collected from (1) overweight/hypertensive children (n  = 38), (2) overweight/non-hypertensive children (n  = 83), and (3) non-overweight/non-hypertensive children (n  = 56).

Results

The mean (± s.d.) age of participants was 10.4 ± 3.4 years, and 53% of them were male. Group 1 and group 2 had higher excretion rates of cortisol and corticosterone metabolites than group 3 (869 (interquartile range: 631–1352) vs 839 (609–1123) vs 608 (439–834) μg/mmol creatinine × m2 body surface area, P < 0.01, for the sum of cortisol metabolites), and group 1 had a higher excretion rate of naive cortisol than group 3. Furthermore, groups differed in cortisol metabolism, in particular in the activities of 11β-hydroxysteroid dehydrogenases, as assessed from the ratio of cortisol:cortisone metabolites (group 2 < group 3), 5α-reductase (group 1 > group 2 or 3), and CYP3A4 activity (group 1 < group 2 or 3).

Discussion

The sequence of events leading to obesity-associated hypertension in children may involve an increase in the production of glucocorticoids, downregulation of 11β-hydroxysteroid dehydrogenase type 1 activity, and upregulation of 5α-reductase activity, along with a decrease in CYP3A4 activity and an increase in bioavailable cortisol.

Open access