Browse

You are looking at 31 - 40 of 585 items for

  • Open access x
Clear All
Open access

Yusaku Mori, Hiroyuki Shimizu, Hideki Kushima, Tomomi Saito, Munenori Hiromura, Michishige Terasaki, Masakazu Koshibu, Hirokazu Ohtaki and Tsutomu Hirano

Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.

Open access

M I Stamou, P Varnavas, L Plummer, V Koika and N A Georgopoulos

Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a rare disease with a wide spectrum of reproductive and non-reproductive clinical characteristics. Apart from the phenotypic heterogeneity, IGD is also highly genetically heterogeneous with >35 genes implicated in the disease. Despite this genetic heterogeneity, genetic enrichment in specific subpopulations has been described. We have previously described low prevalence of genetic variation in the Greek IGD cohort discovered with utilization of Sanger sequencing in 14 known IGD genes. Here, we describe the expansion of genetic screening in the largest IGD Greek cohort that has ever been studied with the usage of whole-exome sequencing, searching for rare sequencing variants (RSVs) in 37 known IGD genes. Even though Sanger sequencing detected genetic variation in 21/81 IGD patients in 7/14 IGD genes without any evidence of oligogenicity, whole exome sequencing (WES) revealed that 27/87 IGD patients carried a rare genetic change in a total of 15 genes with 4 IGD cases being oligogenic. Our findings suggest that next-generation sequencing (NGS) techniques can discover previously undetected variation, making them the standardized method for screening patients with rare and/or more common disorders.

Open access

Michaela Keuper

The crosstalk between macrophages (MΦ) and adipocytes within white adipose tissue (WAT) impacts obesity-associated insulin resistance and other associated metabolic disorders, such as atherosclerosis, hypertension, and type 2 diabetes. MΦ infiltration is increased in WAT during obesity, which is linked to decreased mitochondrial content and activity. The mechanistic interplay between MΦ and mitochondrial function of adipocytes is under intense investigation, as MΦ and inflammatory pathways exhibit a pivotal role in the reprogramming of WAT metabolism in physiological responses during cold, fasting and exercise. Thus, the underlying immunometabolic pathways may offer therapeutic targets to correct obesity and metabolic disease. Here, I review the current knowledge on the quantity and the quality of human adipose tissue macrophages (ATMΦ) and their impact on the bioenergetics of human adipocytes. The effects of ATMΦ and their secreted factors on mitochondrial function of white adipocytes are discussed, including recent research on MΦ as part of an immune signaling cascade involved in the 'browning' of WAT, which is defined as the conversion from white, energy-storing adipocytes into brown, energy-dissipating adipocytes.

Open access

G Giuffrida, F Ferraù, R Laudicella, O R Cotta, E Messina, F Granata, F F Angileri, A Vento, A Alibrandi, S Baldari and S Cannavò

In aggressive pituitary tumors (PT) showing local invasion or growth/recurrence despite multimodal conventional treatment, temozolomide (TMZ) is considered a further therapeutic option, while little data are available on peptide receptor radionuclide therapy (PRRT). We analyzed PRRT effectiveness, safety and long-term outcome in three patients with aggressive PT, also reviewing the current literature. Patient #1 (F, giant prolactinoma) received five cycles (total dose 37 GBq) of 111In-DTPA-octreotide over 23 months, after unsuccessful surgery and long-term dopamine-agonist treatment. Patient #2 (M, giant prolactinoma) underwent two cycles (12.6 GBq) of 177Lu-DOTATOC after multiple surgeries, radiosurgery and TMZ. In patient #3 (F, non-functioning PT), five cycles (29.8 GBq) of 177Lu-DOTATOC followed five surgeries, radiotherapy and TMZ. Eleven more cases of PRRT-treated aggressive PT emerged from literature. Patient #1 showed tumor shrinkage and visual/neurological amelioration over 8-year follow-up, while the other PTs continued to grow causing blindness and neuro-cognitive disorders (patient #2) or monolateral amaurosis (patient #3). No adverse effects were reported. Including the patients from literature, 4/13 presented tumor shrinkage and clinical/biochemical improvement after PRRT. Response did not correlate with patients’ gender or age, neither with used radionuclide/peptide, but PRRT failure was significantly associated with previous TMZ treatment. Overall, adverse effects occurred only in two patients. PRRT was successful in 1/3 of patients with aggressive PT, and in 4/5 of those not previously treated with TMZ, representing a safe option after unsuccessful multimodal treatment. However, at present, considering the few data, PRRT should be considered only in an experimental setting.

Open access

Agnieszka Bogusz, Svenja Boekhoff, Monika Warmuth-Metz, Gabriele Calaminus, Maria Eveslage and Hermann L Müller

Objective

Quality of life (QoL) is frequently impaired in childhood-onset craniopharyngioma (CP) by hypothalamic syndrome. The debate, whether pretreatment hypothalamic involvement (HI) has apriori prognostic impact or surgical hypothalamic lesions (HL) determine outcome, is controversial.

Design

Survival and outcome of CPs recruited between 2007 and 2014 in KRANIOPHARYNGEOM 2007 were analyzed with regard to reference-confirmed presurgical HI and surgical HL.

Methods

Radiological findings, BMI and QoL were assessed at diagnosis and during follow-up. QoL was assessed using Pediatric Quality of Life (PEDQOL) questionnaire.

Results

One hundred sixty-nine CPs were included presenting with no HI (n = 11), anterior (n = 49) and anterior + posterior (a + p) HI (n = 109) prior to surgery. The latter 109 were analyzed for postoperative HL (no lesion: n = 23, anterior HL: n = 29, a + pHL: n = 57). Progression-free survival (PFS) was higher after complete resection. The highest PFS was observed in CP with a + pHL, especially when compared between non-irradiated subgroups (P = 0.006). Overall survival (OS) rates were 1.0 in all subgroups. CP with a + pHL developed higher BMI (P ≤ 0.001) during follow-up compared between subgroups. 55/109 pts with a + pHI completed PEDQOL at diagnosis (48/109 at 3 years follow-up). QoL was worse for a + pHL patients in terms of physical, social and emotional functionality when compared with the anterior HL and no HL subgroup. BMI development and QoL during follow-up were similar for patients with anterior HL and without HL.

Conclusions

Posterior hypothalamus-sparing surgical strategies are associated with higher QoL, decreased development of obesity and lower PFS in CP.

Open access

Teresa Lam, Mark McLean, Amy Hayden, Anne Poljak, Birinder Cheema, Howard Gurney, Glenn Stone, Neha Bahl, Navneeta Reddy, Haleh Shahidipour and Vita Birzniece

Context

Androgen deprivation therapy (ADT) in prostate cancer results in muscular atrophy, due to loss of the anabolic actions of testosterone. Recently, we discovered that testosterone acts on the hepatic urea cycle to reduce amino acid nitrogen elimination. We now hypothesize that ADT enhances protein oxidative losses by increasing hepatic urea production, resulting in muscle catabolism. We also investigated whether progressive resistance training (PRT) can offset ADT-induced changes in protein metabolism.

Objective

To investigate the effect of ADT on whole-body protein metabolism and hepatic urea production with and without a home-based PRT program.

Design

A randomized controlled trial.

Patients and intervention

Twenty-four prostate cancer patients were studied before and after 6 weeks of ADT. Patients were randomized into either usual care (UC) (n = 11) or PRT (n = 13) starting immediately after ADT.

Main outcome measures

The rate of hepatic urea production was measured by the urea turnover technique using 15N2-urea. Whole-body leucine turnover was measured, and leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, was calculated.

Results

ADT resulted in a significant mean increase in hepatic urea production (from 427.6 ± 18.8 to 486.5 ± 21.3; P < 0.01) regardless of the exercise intervention. Net protein loss, as measured by Lox/Lra, increased by 12.6 ± 4.9% (P < 0.05). PRT preserved lean body mass without affecting hepatic urea production.

Conclusion

As early as 6 weeks after initiation of ADT, the suppression of testosterone increases protein loss through elevated hepatic urea production. Short-term PRT was unable to offset changes in protein metabolism during a state of profound testosterone deficiency.

Open access

Elisabet Einarsdottir, Minna Pekkinen, Kaarel Krjutškov, Shintaro Katayama, Juha Kere, Outi Mäkitie and Heli Viljakainen

Objective

The effect of vitamin D at the transcriptome level is poorly understood, and furthermore, it is unclear if it differs between obese and normal-weight subjects. The objective of the study was to explore the transcriptome effects of vitamin D supplementation.

Design and methods

We analysed peripheral blood gene expression using GlobinLock oligonucleotides followed by RNA sequencing in individuals participating in a 12-week randomised double-blinded placebo-controlled vitamin D intervention study. The study involved 18 obese and 18 normal-weight subjects (of which 20 males) with mean (±s.d.) age 20.4 (±2.5) years and BMIs 36 (±10) and 23 (±4) kg/m2, respectively. The supplemental daily vitamin D dose was 50 µg (2000 IU). Data were available at baseline, 6- and 12-week time points and comparisons were performed between the vitamin D and placebo groups separately in obese and normal-weight subjects.

Results

Significant transcriptomic changes were observed at 6 weeks, and only in the obese subjects: 1724 genes were significantly upregulated and 186 genes were downregulated in the vitamin D group compared with placebo. Further analyses showed several enriched gene categories connected to mitochondrial function and metabolism, and the most significantly enriched pathway was related to oxidative phosphorylation (adjusted P value 3.08 × 10−14). Taken together, our data suggest an effect of vitamin D supplementation on mitochondrial function in obese subjects.

Conclusions

Vitamin D supplementation affects gene expression in obese, but not in normal-weight subjects. The altered genes are enriched in pathways related to mitochondrial function. The present study increases the understanding of the effects of vitamin D at the transcriptome level.

Open access

Monika Bilic, Huma Qamar, Akpevwe Onoyovwi, Jill Korsiak, Eszter Papp, Abdullah Al Mahmud, Rosanna Weksberg, Alison D Gernand, Jennifer Harrington and Daniel E Roth

Fetal growth restriction is linked to adverse health outcomes and is prevalent in low- and middle-income countries; however, determinants of fetal growth are still poorly understood. The objectives were to determine the effect of prenatal vitamin D supplementation on the insulin-like growth factor (IGF) axis at birth, to compare concentrations of IGF-I in newborns in Bangladesh to a European reference population, and to estimate associations between IGF protein concentrations and birth size. In a randomized controlled trial in Dhaka, Bangladesh, pregnant women enrolled at 17-24 weeks gestation were assigned to weekly oral vitamin D3 supplementation from enrolment to delivery at doses of 4200 IU/week, 16800 IU/week, 28000 IU/week or placebo. In this sub-study, 559 woman-infant pairs were included for analysis and cord blood IGF protein concentrations were quantified at birth. There were no significant effects of vitamin D supplementation on cord blood concentrations of IGF-I (p=0.398), IGF-II (p=0.525), binding proteins (BP) IGFBP-1 (p=0.170), IGFBP-3 (p=0.203), or the molar ratio of IGF-I/IGFBP-3 (p=0.941). In comparison to a European reference population, 6% of girls and 23% of boys had IGF-I concentrations below the 2.5th percentile of the reference population. IGF-I, IGF-II, IGFBP-3 and the IGF-I/IGFBP-3 ratio were positively associated with at least one anthropometric parameter, whereas IGFBP-1 was negatively associated with birth anthropometry. In conclusion, prenatal vitamin D supplementation does not alter or enhance fetal IGF pathways.

Open access

Rasha Odeh, Abeer Alassaf, Lubna Gharaibeh, Sarah Ibrahim, Fareed Khdair and Kamel Ajlouni

Objective: Scientific findings regarding the prevalence of Celiac disease (CD) in pediatric patients with type 1 diabetes (T1D) in the Arab world are scarce. We aimed to estimate the prevalence of biopsy proven celiac disease (BPCD) among pediatric patients with T1D from Jordan. We also assessed the possible predictors for developing CD in this cohort of patients and we compared T1D patients who developed BPCD with those who had positive CD serology but negative histology and/or fluctuating CD serology.

Methods: Celiac serology and duodenal biopsy results from 2012 to 2017 were collected from patients with T1D. The outcome of positive celiac serology and the risk factors for CD in T1D patients were investigated.

Results: A total of 538 children, 278 boys (51.7%) were included in the study. The prevalence of positive serology and the diagnosis of BPCD in this cohort of T1D patients were 16.6% and 9.1% respectively. Eighty percent of those with BPCD were asymptomatic and 47% were diagnosed with CD at onset of T1D. Spontaneous normalization of celiac serology occurred in 23.6% of those with positive serology.

Conclusion: CD is prevalent in T1D pediatric patients from Jordan (9.1%). It is often asymptomatic and the majority of cases were diagnosed at onset or within five years of T1D diagnosis. Spontaneous normalization of CD serology occurred in some patients with T1D. Hence, a watchful follow-up is recommended in such patients.

Open access

Anna-Pauliina Iivonen, Johanna Känsäkoski, Kirsi Vaaralahti and Taneli Raivio

In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the genetic cause remains unidentified. Since the lack of certain miRNAs in animal models has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes (MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) was found in one patient. Our results suggest that mutations in the studied miRNAs are unlikely causes of cHH. However, the complex interplay between miRNAs and their target genes in these diseases requires further investigations.