Department of Endocrinology, Oncological Endocrinology and Nuclear Medicine, University Hospital, Krakow, Poland
Search for other papers by Agata Hanna Bryk-Wiązania in
Google Scholar
PubMed
Search for other papers by Mari Minasyan in
Google Scholar
PubMed
Department of Endocrinology, Oncological Endocrinology and Nuclear Medicine, University Hospital, Krakow, Poland
Search for other papers by Alicja Hubalewska-Dydejczyk in
Google Scholar
PubMed
Department of Endocrinology, Oncological Endocrinology and Nuclear Medicine, University Hospital, Krakow, Poland
Search for other papers by Aleksandra Gilis-Januszewska in
Google Scholar
PubMed
Objective
Cushing’s syndrome (CS) is associated with an 18-fold greater risk of venous thromboembolism (VTE). We aimed to identify factors which provoke VTE among patients with CS and VTE and to describe the anticoagulant regimen used in these cases.
Methods
In this retrospective observational study, patients included in the European Registry on CS (ERCUSYN) in Krakow center, Poland, were followed for the occurrence of VTE and anticoagulant treatment. We identified factors provoking VTE according to the International Society of Thrombosis and Hemostasis (ISTH), along with factors included in the Padua score and CS-VTE score.
Results
Of the 128 patients followed for a median of 4.3 years, there were nine patients who experienced ten VTE episodes (prevalence of 7.8% and incidence of 13.4 per 1000 patient-years). All VTEs were classified as provoked according to the ISTH guidance, predominantly due to the transient major and minor (50% and 20%, respectively) factors, while they were less commonly due to persistent (30%) factors. In 2/9 patients, we could not identify any risk factor for VTE according to the Padua score, while in 2/6 patients according to the CS-VTE score. Patients were mostly anticoagulated with vitamin K antagonists (4/8 patients), followed by direct oral anticoagulants (3/8) and low-molecular-weight heparin (1/8). The median duration of anticoagulation was 2.75 years and exceeded beyond the primary treatment in 28% of episodes provoked by transient factors.
Conclusion
Further, multicenter studies are required to create a validated thrombotic risk score and guidelines regarding VTE treatment in CS patients.
Search for other papers by Yumei Zhai in
Google Scholar
PubMed
Search for other papers by Haiming Fu in
Google Scholar
PubMed
Search for other papers by Yu Li in
Google Scholar
PubMed
Search for other papers by Siyuan Li in
Google Scholar
PubMed
Search for other papers by Wenchen Zhang in
Google Scholar
PubMed
Search for other papers by Jianwei Yue in
Google Scholar
PubMed
Search for other papers by Zichao Wang in
Google Scholar
PubMed
Background
Hypertension-induced left ventricular hypertrophy (LVH) is intricately linked to insulin resistance (IR). This research aimed to elucidate the relationship of advanced indices, namely the triglyceride–glucose (TyG) index, the TyG adjusted for body mass index (TyG-BMI), the triglycerides-to-high-density lipoprotein cholesterol ratio (TG/HDL-c), and the metabolic score for IR (METS-IR), with LVH in hypertensive cohorts.
Methods
This analytical case–control investigation encompassed 800 individuals aged 18 or above from the Cardiology Department of the Second Affiliated Hospital of Baotou Medical College over a span from January 2021 to April 2022. Data extraction was conducted from inpatient records. The nexus between the four metrics and LVH susceptibility was ascertained via logistic regression models. Furthermore, the receiver operating characteristic (ROC) curve’s area (AUC) shed light on the discriminative capacities of the distinct IR indicators for LVH, considering other concomitant risk variables.
Results
Post multifaceted covariate adjustments, the fourth quartile figures for TyG-BMI emerged as the most starkly significant (OR: 5.211, 95% CI: 2.861–9.492), succeeded by METS-IR (OR: 4.877, 95% CI: 2.693–8.835). In juxtaposition with other IR-derived indices (TyG and TG/HDL-c), TyG-BMI manifested the paramount AUC (AUC: 0.657; 95% CI: 0.606–0.708). Concurrently, METS-IR exhibited commendable predictive efficacy for LVH (AUC: 0.646; 95% CI: 0.595–0.697).
Conclusion
TyG-BMI and METS-IR displayed superior discriminative capabilities for LVH, underscoring their potential as supplementary indicators in gauging LVH peril in clinical settings and prospective epidemiological research.
Search for other papers by Run-Qing Xiong in
Google Scholar
PubMed
Search for other papers by Yan-Ping Li in
Google Scholar
PubMed
Search for other papers by Lu-Ping Lin in
Google Scholar
PubMed
Search for other papers by Jeng-Yuan Yao in
Google Scholar
PubMed
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM) that contributes to cardiovascular morbidity and mortality. However, the metabolic alterations and specific biomarkers associated with DCM in T2DM remain unclear. In this study, we conducted a comprehensive metabolomic analysis using liquid chromatography–mass spectrometry (LC-MS) to investigate the plasma metabolite profiles of T2DM patients with and without DCM. We identified significant differences in metabolite levels between the groups, highlighting the dysregulation of various metabolic pathways, including starch and sucrose metabolism, steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and pyrimidine metabolism. Although several metabolites showed altered abundance in DCM, they also shared characteristics of DCM and T2DM rather than specific to DCM. Additionally, through biomarker analyses, we identified potential biomarkers for DCM, such as cytidine triphosphate, 11-ketoetiocholanolone, saccharopine, nervonic acid, and erucic acid. These biomarkers demonstrated distinct patterns and associations with metabolic pathways related to DCM. Our findings provide insights into the metabolic changes associated with DCM in T2DM patients and highlight potential biomarkers for further validation and clinical application. Further research is needed to elucidate the underlying mechanisms and validate the diagnostic and prognostic value of these biomarkers in larger cohorts.
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Henrik Ryberg in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Anna-Karin Norlén in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Andreas Landin in
Google Scholar
PubMed
Search for other papers by Per Johansson in
Google Scholar
PubMed
Search for other papers by Zeinab Salman in
Google Scholar
PubMed
Search for other papers by Anders Wallin in
Google Scholar
PubMed
Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
Search for other papers by Johan Svensson in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Objective
Sex steroids exert important biological functions within the CNS, but the underlying mechanisms are poorly understood. The contribution of circulating sex steroids to the levels in CNS tissue and cerebrospinal fluid (CSF) has been sparsely investigated in human and with inconclusive results. This could partly be due to lack of sensitive validated assays. To address this, we validated a gas chromatography–tandem mass spectrometry (GC-MS/MS) assay for quantification of sex steroid hormones/precursors in CSF.
Methods
GC-MS/MS quantification of dihydrotestosterone (DHT, CSF lower limit of quantification, 1.5 pg/mL), testosterone (4.9), estrone (E1, 0.88), estradiol (E2, 0.25), dehydroepiandrosterone (DHEA, 38.4), androstenedione (4D, 22.3), and progesterone (P, 4.2) in CSF, and corresponding serum samples from 47 men.
Results
Analyses of CSF revealed that DHEA was the major sex steroid (73.5 ± 31.7 pg/mL) followed by 4D (61.4 ± 29.6 pg/mL) and testosterone (49.5 ± 18.9 pg/mL). The CSF levels of DHT, E2, and E1 were substantially lower, and P was in general not detectable in CSF. For all sex steroids except E2, strong associations between corresponding CSF and serum levels were observed. We propose that testosteronein CSF is derived from circulating testosterone, DHT in CSF is from local conversion from testosterone, while E2 in CSF is from local conversion from 4D in CNS.
Conclusions
We describe the first thoroughly validated highly sensitive mass spectrometric assay for a broad sex steroid hormone panel suitable for human CSF. This assay constitutes a new tool for investigation of the role of sex steroid hormones in the human CNS.
Significance statement
In this study, a fully validated highly sensitive mass spectrometric assay for sex steroids was applied to human CSF. The results were used to describe the relative contribution of peripheral circulating sex steroids together with locally transformation of sex steroids to the levels in CSF. The results are of importance to understand the biological processes of the human brain.
Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
Search for other papers by Shuang Wan in
Google Scholar
PubMed
Search for other papers by Chengcheng Zheng in
Google Scholar
PubMed
Search for other papers by Tao Chen in
Google Scholar
PubMed
Search for other papers by Lu Tan in
Google Scholar
PubMed
Search for other papers by Jia Tang in
Google Scholar
PubMed
Search for other papers by Haoming Tian in
Google Scholar
PubMed
Search for other papers by Yan Ren in
Google Scholar
PubMed
We applied 24-h Holter monitoring to analyze the characteristics of arrhythmias and heart rate variability in Chinese patients with primary aldosteronism (PA) and compared them with age-, sex-, and blood pressure-matched primary hypertension (PH) patients. A total of 216 PA patients and 261 PH patients were enrolled. The nonstudy data were balanced using propensity score matching (PSM), and the risk variables for developing arrhythmias were then analyzed using logistic regression analysis. Before PSM, the proportion of PA patients with combined atrial premature beats and prolonged QT interval was higher than the corresponding proportion in the PH group. After PSM, the PA group had a larger percentage of transient atrial tachycardia and frequent atrial premature beats, and it had higher heart rate variability metrics. The proportion of unilateral PA combined with multiple ventricular premature beats was higher than that of bilateral PA. Older age, grade 3 hypertension, and hypokalemia were independent risk factors for the emergence of arrhythmias in PA patients. PA patients suffer from a greater prevalence of arrhythmias than well-matched PH patients.
Search for other papers by Tao Gao in
Google Scholar
PubMed
Search for other papers by Rui Liu in
Google Scholar
PubMed
Search for other papers by Chunli Li in
Google Scholar
PubMed
Search for other papers by Xinglin Chu in
Google Scholar
PubMed
Search for other papers by Qiao Guo in
Google Scholar
PubMed
Search for other papers by Dazhi Ke in
Google Scholar
PubMed
Background
Fetuin-B, a cytokine that regulates lipid metabolism, has recently been linked to cardiovascular diseases such as coronary heart disease. In this study, we discussed the relationship between fetuin-B and essential hypertension.
Method
A bioinformatics analysis of fetuin-B was performed. A total of 206 with essential hypertension and 180 age- and-sex-matched healthy subjects were enrolled. Plasma fetuin-B, endothelin 1 (ET-1), nitric oxide (NO), and adiponectin (ADI) levels were measured using ELISA kits.
Results
Bioinformatics analysis has revealed that fetuin-B plays an important role in pathways such as lipid metabolism. Compared with healthy subjects, serum fetuin-B levels in patients with essential hypertension were significantly increased. Correlation analysis showed that the serum fetuin-B level was positively correlated with systolic blood pressure (SBP), diastolic blood pressure, body mass index, fat percentage in vivo, waist–hip ratio, intima–media thickness, low-density lipoprotein cholesterol (LDL-C), glutamyltranspeptidase, alanine transaminase, albumin, fasting blood glucose (FBG), glycated hemoglobin, and ET-1 in the overall study subjects (all P < 0.05) and negatively correlated with HDL-C, ADI, and NO (all P < 0.05). Multivariate linear regression analysis showed that SBP, FBG, LDL-C, ADI, and ET-1 were independent factors affecting serum fetuin-B. A binary logistic regression analysis showed that fetuin-B was an independent risk factor for primary hypertension (odds ratio: 1.060, 95% CI: 1.034–1.086, P < 0.001). Receiver operating characteristic curve analysis was used to evaluate the predictive value of fetuin-B for primary hypertension, and the optimal cutoff point was 83.14 μg/mL (sensitivity 77.4%, specificity 63.3%) (area under the curve) = 0.7738, 95% CI 0.7276–0.8200, P < 0.001).
Conclusion
Elevated fetuin-B levels are associated with an increased risk of essential hypertension.
Search for other papers by Shenghe Luo in
Google Scholar
PubMed
Department of Cardiology, Yanbian University Hospital, Yanji, China
Search for other papers by Yunhui Zuo in
Google Scholar
PubMed
Search for other papers by Xiaotian Cui in
Google Scholar
PubMed
Search for other papers by Meiping Zhang in
Google Scholar
PubMed
Search for other papers by Honghua Jin in
Google Scholar
PubMed
Search for other papers by Lan Hong in
Google Scholar
PubMed
To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4−/− mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9–39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9–39. Exendin9–39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9–39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9–39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4−/− mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.
Search for other papers by Paweł Komarnicki in
Google Scholar
PubMed
Search for other papers by Paweł Gut in
Google Scholar
PubMed
Search for other papers by Jan Musiałkiewicz in
Google Scholar
PubMed
Search for other papers by Maja Cieślewicz in
Google Scholar
PubMed
Search for other papers by Adam Maciejewski in
Google Scholar
PubMed
Search for other papers by Prachi Patel in
Google Scholar
PubMed
Search for other papers by George Mastorakos in
Google Scholar
PubMed
Search for other papers by Marek Ruchała in
Google Scholar
PubMed
Introduction
Neuroendocrine tumors (NETs) are rare neoplasms that occur in various locations throughout the body. Despite their usually benign character, they might manifest with distant metastases. N-terminal prohormone of brain natriuretic peptide (NT-proBNP) has previously been described as a useful biomarker in diagnosing carcinoid heart disease (CHD), a common advanced NETs manifestation. We observed plasma concentrations of NT-proBNP in metastatic midgut NETs over a 4-year period.
Objectives
We aimed to explore NT-proBNP concentrations in states of varying levels of cell proliferation and disease status. Our goal was to investigate NT-proBNP’s role in predicting disease progression in relation to previous research and up-to-date scientific guidelines.
Patients and methods
We performed a retrospective multivariate analysis of NT-proBNP concentrations in 41 midgut NETs patients treated with somatostatin analogs, all with liver metastases. NT-proBNP concentrations were measured in every patient across 16 evenly distanced time points over a 48-month period and were compared to variables such as sex, age, grading, Ki-67, primary tumor location, and CT findings.
Results
NT-proBNP concentrations correlated positively with higher liver tumor burden, higher grading, high Ki-67 levels, and with progressive disease in CT. There were no differences in NT-proBNP levels with regard to primary location (ileum vs jejunum), sex, and age.
Conclusion
We conclude that NT-proBNP is a useful analyte for monitoring NETs progression, due to its increased concentration in scenarios implying increased cellular proliferation. These long-term follow-up results align with previous findings and suggest an additional role for NT-proBNP in diagnostic algorithms, beyond a CHD biomarker.
Search for other papers by Ying-Lien Cheng in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-I Lee in
Google Scholar
PubMed
Search for other papers by Yu-Mei Chien in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-Wei Lee in
Google Scholar
PubMed
Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
Search for other papers by Yi-Jen Chen in
Google Scholar
PubMed
Vitamin D deficiency is associated with hyperlipidemia, but it remains unclear whether vitamin D supplementation reduces serum lipid levels. The aims of this study were to investigate the associations between increased serum 25-hydroxyvitamin D (25(OH)D) concentrations and lipid levels and identify the characteristics of people with or without lipid reduction associated with increased 25(OH)D levels. The medical records of 118 individuals (53 men; mean age, 54.4 ± 10.6 years) whose serum 25(OH)D levels increased between 2 consecutive measurements were retrospectively reviewed. People with increased 25(OH)D levels (from 22.7 (17.6–29.2) to 32.1 (25.6–36.8) mg/dL; P < 0.01) had a significant reduction in serum levels of triglycerides (TGs) (from 111.0 (80–164) to 104.5 (73–142) mg/dL; P < 0.01) and total cholesterol (TC) (from 187.5 (155–213) to 181.0 (150–210) mg/dL; P < 0.05). The individuals who responded to vitamin D (≥10% reduction in TG or TC levels) exhibited significantly higher baseline TG and TC levels than those who did not. Only patients with hyperlipidemia (not those without hyperlipidemia) at baseline exhibited significantly reduced TG and TC levels at follow-up. However, increasing serum 25(OH)D concentrations were significantly correlated with decreasing lipid levels in individuals with baseline 25(OH)D levels less than 30 ng/mL and in individuals aged 50–65 years (not in patients younger than 50 years or older than 65 years). In conclusion, increasing serum 25(OH)D concentrations may be potentially helpful for the treatment of hyperlipidemia in people with vitamin D deficiency.
Search for other papers by Mette Faurholdt Gude in
Google Scholar
PubMed
Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Search for other papers by Mette Bjerre in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Morten Haaning Charles in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Daniel R Witte in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Annelli Sandbæk in
Google Scholar
PubMed
Search for other papers by Jan Frystyk in
Google Scholar
PubMed
Objective
Physiologically, pregnancy-associated plasma protein-A (PAPP-A) serves to liberate bound IGF1 by enzymatic cleavage of IGF-binding proteins (IGFBPs), IGFBP4 in particular. Clinically, PAPP-A has been linked to cardiovascular disease (CVD). Stanniocalcin-2 (STC2) is a natural inhibitor of PAPP-A enzymatic activity, but its association with CVD is unsettled. Therefore, we examined associations between the STC2–PAPP-A–IGFBP4–IGF1 axis and all-cause mortality and CVD in patients with type 2 diabetes (T2D).
Design
We followed 1284 participants with T2D from the ADDITION trial for 5 years.
Methods
Circulating concentrations of STC2, PAPP-A, total and intact IGFBP4 and IGF1 and -2 were measured at inclusion. End-points were all-cause mortality and a composite CVD event: death from CVD, myocardial infarction, stroke, revascularisation or amputation. Survival analysis was performed by Cox proportional hazards model.
Results
During follow-up, 179 subjects presented with an event. After multivariable adjustment, higher levels of STC2, PAPP-A, as well as intact and total IGFBP4, were associated with all-cause mortality; STC2: hazard ratio (HR) = 1.84 (1.09–3.12) (95% CI); P = 0.023, PAPP-A: HR = 2.81 (1.98–3.98); P < 0.001, intact IGFBP4: HR = 1.43 (1.11–1.85); P = 0.006 and total IGFBP4: HR = 3.06 (1.91–4.91); P < 0.001. Higher PAPP-A levels were also associated with CVD events: HR = 1.74 (1.16–2.62); P = 0.008, whereas lower IGF1 levels were associated with all-cause mortality: HR = 0.51 (0.34–0.76); P = 0.001.
Conclusions
This study supports that PAPP-A promotes CVD and increases mortality. However, STC2 is also associated with mortality. Given that STC2 inhibits the enzymatic effects of PAPP-A, we speculate that STC2 either serves to counteract harmful PAPP-A actions or possesses effects independently of the PAPP-A–IGF1 axis.
Significance statement
PAPP-A has pro-atherosclerotic effects and exerts these most likely through IGF1. IGF1 is regulated by the STC2–PAPP-A–IGFBP4–IGF1 axis, where STC2, an irreversible inhibitor of PAPP-A, has been shown to reduce the development of atherosclerotic lesions in mice. We examined the association of this axis to mortality and CVD in T2D. We demonstrated an association between PAPP-A and CVD. All components of the STC2–PAPP-A–IGFBP4–IGF1 axis were associated with mortality and it is novel that STC2 was associated with mortality in T2D. Our study supports that inhibition of PAPP-A may be a new approach to reducing mortality and CVD. Whether modification of STC2 could serve as potential intervention warrants further investigation.