Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Search for other papers by Beverly M K Biller in
Google Scholar
PubMed
Search for other papers by Jean-Marc Ferran in
Google Scholar
PubMed
Search for other papers by Murray B Gordon in
Google Scholar
PubMed
Search for other papers by Nicky Kelepouris in
Google Scholar
PubMed
Search for other papers by Navid Nedjatian in
Google Scholar
PubMed
Search for other papers by Anne H Olsen in
Google Scholar
PubMed
Search for other papers by Matthias M Weber in
Google Scholar
PubMed
Adult growth hormone deficiency (AGHD) is associated with an increased risk of cardiovascular (CV) disease. Long-term growth hormone (GH) treatment could improve CV outcomes. The objective of this study was to evaluate CV disease risk in patients with AGHD who received GH replacement therapy for up to 10 years as part of NordiNet® IOS (NCT00960128) and the ANSWER Program (NCT01009905). The studies were observational, non-interventional and multicentre, monitoring long-term effectiveness and safety of GH treatment. NordiNet® IOS involved 23 countries (469 sites) across Europe and the Middle East. The ANSWER Program was conducted in the USA (207 sites). This analysis included patients aged 18–75 years who were GH naïve at study entry, who had ≤10 years of GH treatment data and who could be assessed for CV risk for at least 1 follow-up year. The main outcome measure was risk of CV disease by age 75 years, as calculated with the Multinational Cardiovascular Risk Consortium model (Brunner score) using non-high-density lipoprotein cholesterol adjusted for age, sex and CV risk factors. The results of this analysis showed that CV risk decreased gradually over the 10-year period for GH-treated patients. The risk was lower for patients treated for 2 and 7 years vs age- and sex-matched control groups (not yet started treatment) (14.51% vs 16.15%; P = 0.0105 and 13.53% vs 16.81%; P = 0.0001, respectively). This suggests that GH treatment in people with AGHD may reduce the risk of CV disease by age 75 years compared with matched controls.
Search for other papers by Melody Lok-Yi Chan in
Google Scholar
PubMed
Search for other papers by Sammy Wing-Ming Shiu in
Google Scholar
PubMed
Search for other papers by Ching-Lung Cheung in
Google Scholar
PubMed
Search for other papers by Anskar Yu-Hung Leung in
Google Scholar
PubMed
Search for other papers by Kathryn Choon-Beng Tan in
Google Scholar
PubMed
The inducible degrader of low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase involved in the post-transcriptional regulation of LDL receptor (LDLR). Statins lower plasma LDL by activating transcription of hepatic LDLR expression, and we have determined whether statins modulate IDOL expression and influence LDLR protein abundance. IDOL expression in monocytes and serum IDOL level was determined in statin-treated familial hypercholesterolemia (FH) patients and compared with control subjects. Serum IDOL level was also evaluated in a group of untreated FH patients before and after the initiation of statin. The mechanism underlying the inhibitory effect of statin on IDOL expression was investigated in vitro. In statin-treated FH patients, serum IDOL level and its expression in monocytes was reduced compared with control (P < 0.05). In contrast, untreated FH patients had higher serum levels of IDOL and proprotein convertase subtilisin/kexintype 9 (PCSK9) than control (P < 0.05), and serum IDOL level decreased after statin therapy (P < 0.05) whereas an increase was observed in PCSK9 level (P < 0.01). In vitro, atorvastatin significantly decreased IDOL abundance in a dose-dependent manner in cultured macrophages and hepatocytes with a concomitant increase in LDLR expression. The transcription of IDOL was restored by adding either an LXR agonist T0901317 or oxysterol 22(R)-hydroxycholesterol, indicating that statin inhibited IDOL expression by reducing LXR activation. The LXR-IDOL-LDLR axis can be modulated by statins in vitro and in vivo. Statins inhibit IDOL expression by reducing LXR activation and upregulate LDLR, and statins exert the opposite effect on IDOL and PCSK9.
Search for other papers by Eng-Loon Tng in
Google Scholar
PubMed
Search for other papers by Yee Sian Tiong in
Google Scholar
PubMed
Search for other papers by Aye Thida Aung in
Google Scholar
PubMed
Search for other papers by Nicole Ya Yuan Chong in
Google Scholar
PubMed
Search for other papers by Zhemin Wang in
Google Scholar
PubMed
Background
Evidence on the efficacy and safety of anticoagulation in preventing stroke and thromboembolic events in people with thyrotoxic atrial fibrillation is scarce.
Objective
We evaluated the efficacy and safety of anticoagulation in people with thyrotoxic atrial fibrillation.
Methods
Our study protocol was published in the International Prospective Register of Systematic Reviews (registration no. CRD42020222782). Four databases and two systematic review registers were searched through 25 November 2020 for interventional and observational studies comparing anticoagulation therapy with active comparators, placebo, or no treatment in people with thyrotoxic atrial fibrillation. Random-effects meta-analysis and sensitivity analysis were performed. Quality of evidence was described using the GRADE framework.
Results
In the study, 23,145 records were retrieved. One randomized controlled trial and eight cohort studies were ultimately included. Effect estimates on the efficacy and safety of anticoagulation were extracted. Meta-analysis using the inverse variance and random-effects methods was conducted on four cohort studies with 3443 participants and 277 events. Anticoagulation in people with thyrotoxic atrial fibrillation reduced the risk of ischemic stroke and systemic thromboembolism by 3% (95% CI: 1–6%). Warfarin may prevent ischemic stroke in people with thyrotoxic atrial fibrillation if the CHA2DS2-VASc score exceeds 1 and when atrial fibrillation persists beyond 7 days. Direct oral anticoagulants may be associated with fewer bleeding events than warfarin.
Conclusions
Anticoagulation prevents ischemic stroke and systemic thromboembolism in people with thyrotoxic atrial fibrillation. Direct oral anticoagulants may be associated with fewer bleeding events.
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Internal Medicine, Lillebaelt Hospital, Kolding, Denmark
Search for other papers by Simon Chang in
Google Scholar
PubMed
Search for other papers by Arkadiusz J Goszczak in
Google Scholar
PubMed
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Jens Fedder in
Google Scholar
PubMed
Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Search for other papers by M Vakur Bor in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Department of Haematology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
Search for other papers by Moniek P M de Maat in
Google Scholar
PubMed
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Search for other papers by Anna-Marie B Münster in
Google Scholar
PubMed
Objective
Klinefelter syndrome (KS) is associated with increased risk of thrombosis. Hypogonadism and accumulating body fat in KS have a potential impact on fibrinolysis. In this study, we assessed the fibrinolytic system and the association with testosterone levels in KS.
Design
This study is a cross-sectional comparison of men with KS and age-matched male controls.
Methods
Fibrin clot lysis was evaluated by turbidity measurements and by measuring levels of individual fibrinolytic proteins in plasma samples. Fibrin clot structure was evaluated by scanning electron microscopy. Total testosterone was measured by liquid chromatography-tandem mass spectrometry. Body fat was evaluated by dual-energy X-ray absorptiometry.
Results
In this study, 45 men with KS and 45 age- and education-matched controls were included. Men with KS had a 24% reduction in fibrin clot lysis compared with controls (46.2 ± 17.1 vs 60.6 ± 18.8 %/h, P = 0.0003) and higher levels of fibrinogen, factor XIII (P ≤ 0.01), and plasminogen activator inhibitor type 1 (P = 0.04). Men with KS had lower total testosterone (P = 0.008) and higher body fat (P = 0.001). In KS, reduced fibrin clot lysability was associated with higher fibrinogen and body fat related to decreasing total testosterone and hypogonadism among men with KS. Fibrin clot structure was not different compared to KS and controls.
Conclusions
Fibrin clot lysis in KS was markedly reduced, potentially contributing to a prothrombotic state and increasing thrombotic risk. Hypogonadism in KS was associated with increased fibrinogen and total body fat, predicting reduced fibrin clot lysis.
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Anne-Sophie C A M Koning in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Philippe C Habets in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Marit Bogaards in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Jan Kroon in
Google Scholar
PubMed
Department of Pediatric Neuro-Oncology, Prinses Máxima Centrum, Utrecht, The Netherlands
Search for other papers by Hanneke M van Santen in
Google Scholar
PubMed
Search for other papers by Judith M de Bont in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Onno C Meijer in
Google Scholar
PubMed
Background
Synthetic glucocorticoids like dexamethasone can cause severe neuropsychiatric effects. They preferentially bind to the glucocorticoid receptor (GR) over the mineralocorticoid receptor (MR). High dosages result in strong GR activation but likely also result in lower MR activation based on GR-mediated negative feedback on cortisol levels. Therefore, reduced MR activity may contribute to dexamethasone-induced neuropsychiatric symptoms.
Objective
In this single case study, we evaluate whether dexamethasone leads to reduced MR activation in the human brain. Brain tissue of an 8-year-old brain tumor patient was used, who suffered chronically from dexamethasone-induced neuropsychiatric symptoms and deceased only hours after a high dose of dexamethasone.
Main outcome measures
The efficacy of dexamethasone to induce MR activity was determined in HEK293T cells using a reporter construct. Subcellular localization of GR and MR was assessed in paraffin-embedded hippocampal tissue from the patient and two controls. In hippocampal tissue from the patient and eight controls, mRNA of MR/GR target genes was measured.
Results
In vitro, dexamethasone stimulated MR with low efficacy and low potency. Immunofluorescence showed the presence of both GR and MR in the hippocampal cell nuclei after dexamethasone exposure. The putative MR target gene JDP2 was consistently expressed at relatively low levels in the dexamethasone-treated brain samples. Gene expression showed substantial variation in MR/GR target gene expression in two different hippocampus tissue blocks from the same patient.
Conclusions
Dexamethasone may induce MR nuclear translocation in the human brain. Conclusions on in vivo effects on gene expression in the brain await the availability of more tissue of dexamethasone-treated patients.
Search for other papers by Alicia Romano in
Google Scholar
PubMed
Search for other papers by Juan Pablo Kaski in
Google Scholar
PubMed
Search for other papers by Jovanna Dahlgren in
Google Scholar
PubMed
Search for other papers by Nicky Kelepouris in
Google Scholar
PubMed
Search for other papers by Alberto Pietropoli in
Google Scholar
PubMed
Search for other papers by Tilman R Rohrer in
Google Scholar
PubMed
Search for other papers by Michel Polak in
Google Scholar
PubMed
Objective
The study aims to assess the cardiovascular safety of growth hormone (GH) treatment in patients with Noonan syndrome (NS) in clinical practice.
Design
The study design involves two observational, multicentre studies (NordiNet® IOS and the ANSWER Program) evaluating the long-term effectiveness and safety of GH in >38,000 paediatric patients, of which 421 had NS.
Methods
Serious adverse events, serious adverse reactions (SARs) and non-serious adverse reactions (NSARs) were reported by the treating physicians. Cardiovascular comorbidities at baseline and throughout the studies were also recorded.
Results
The safety analysis set comprised 412 children with NS (29.1% females), with a mean (s.d.) baseline age of 9.29 (3.88) years, treated with an average GH dose of 0.047 (0.014) mg/kg/day during childhood. Cardiovascular comorbidities at baseline were reported in 48 (11.7%), most commonly pulmonary valve stenosis (PVS) and atrial septal defects. Overall, 22 (5.3%) patients experienced 34 safety events. The most common were the NSARs: headache (eight events in seven patients) and arthralgia (five events in three patients). Two SARs occurred in one patient (brain neoplasm and metastases to spine). No cardiovascular safety events were recorded in patients with NS. Five cardiovascular comorbidities in five patients were reported after initiation of GH treatment: three cases of unspecified cardiovascular disease, one ruptured abdominal aortic aneurysm and one PVS.
Conclusions
GH treatment had a favourable safety profile in patients with NS, including those with cardiovascular comorbidities. Prospective studies are warranted to systematically assess the safety of GH treatment in patients with NS and cardiovascular disease.
Department of Nephrology & Key Laboratory of Nephrology, National Health Commission and Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
Search for other papers by Lanping Jiang in
Google Scholar
PubMed
Renal Division, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
Search for other papers by Xiaoyan Peng in
Google Scholar
PubMed
Search for other papers by Bingbin Zhao in
Google Scholar
PubMed
Search for other papers by Lei Zhang in
Google Scholar
PubMed
Search for other papers by Lubin Xu in
Google Scholar
PubMed
Search for other papers by Xuemei Li in
Google Scholar
PubMed
Search for other papers by Min Nie in
Google Scholar
PubMed
Search for other papers by Limeng Chen in
Google Scholar
PubMed
Purposes
This study was conducted to identify the frequent mutations from reported Chinese Gitelman syndrome (GS) patients, to predict the three-dimensional structure change of human Na–Cl co-transporter (hNCC), and to test the activity of these mutations and some novel mutations in vitro and in vivo.
Methods
SLC12A3 gene mutations in Chinese GS patients previously reported in the PubMed, China National Knowledge Infrastructure, and Wanfang database were summarized. Predicted configurations of wild type (WT) and mutant proteins were achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, N534K, Q617R, and R928C) were generated by site-directed mutagenesis. 22Na+ uptake experiment was carried out in the Xenopus laevisoocyte expression system. In the study, 35 GS patients and 20 healthy volunteers underwent the thiazide test.
Results
T60M, T163M, D486N, R913Q, R928C, and R959frameshift were frequent SLC12A3 gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein’s three-dimensional structure was predicted to be altered in all mutations. Compared with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all six mutations: T60M 22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 41 ± 15.5%, Q617R 63 ± 22.1%, and D486N 77 ± 20.4%. In thiazide test, the net increase in chloride fractional excretion in 20 healthy controls was significantly higher than GS patients with or without T60M or D486N mutations.
Conclusions
Frequent mutations (T60M, D486N, and R928C) and novel mutations (L215F, N534K, and Q617R) lead to protein structure alternation and protein dysfunction verified by 22Na+ uptake experiment in vitro and thiazide test on the patients.