Browse

You are looking at 141 - 150 of 1,460 items for

Xiaobing Lu Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Xiaobing Lu in
Google Scholar
PubMed
Close
,
Jiang Yue Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Jiang Yue in
Google Scholar
PubMed
Close
,
Qianjing Liu Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Qianjing Liu in
Google Scholar
PubMed
Close
,
Shengyun He Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Shengyun He in
Google Scholar
PubMed
Close
,
Ying Dong Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Ying Dong in
Google Scholar
PubMed
Close
,
Ming Zhang Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Ming Zhang in
Google Scholar
PubMed
Close
,
Yicheng Qi Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Yicheng Qi in
Google Scholar
PubMed
Close
,
Minglan Yang Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Minglan Yang in
Google Scholar
PubMed
Close
,
Wang Zhang Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Wang Zhang in
Google Scholar
PubMed
Close
,
Hua Xu Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Hua Xu in
Google Scholar
PubMed
Close
,
Qing Lu Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Qing Lu in
Google Scholar
PubMed
Close
, and
Jing Ma Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Jing Ma in
Google Scholar
PubMed
Close

Background

The aim of this study was to address the intramuscular adipose tissue (IMAT) accumulation in the lower extremities and further detect the relationship between adipose tissue (AT) distribution in the muscle and glucose metabolism in subjects with obesity.

Methods

We conducted a cross-sectional study in 120 Chinese obese adults (80 male and 40 female) with BMI ≥ 28 kg/m2. MRI was applied to access the IMAT content in lower extremities. The oral glucose tolerance test was used to evaluate the glucose metabolism and insulin secretion in all individuals. The correlations between glucose metabolism and the fat content of the lower extremities were further assessed.

Results

Among 120 included subjects, 54 were classified as subjects with normal glucose tolerance (NGT) and 66 with impaired glucose regulation (IGR). We presented that those with IGR had higher fat accumulation in semitendinosus, adductor magnus, gracilis and sartorius than those with NGT (all P < 0.05). In sex-specific analyses, females have higher IMAT in adductor magnus than males (P < 0.001). Males with IGR had higher fat fraction of semitendinosus and sartorius than those with NGT (P = 0.020, P = 0.014, respectively). Logistic regression analyses revealed that IMAT content in semitendinosus was the independent factor of IGR in individuals with obesity after adjustment for age, gender, triglycerides, creatinine and albumin (odds ratio: 1.13, 95% CI: 1.02–1.26, P = 0.024).

Conclusions

Increased adipose tissue accumulation in thigh muscles was associated with glucose dysregulation in patients with obesity. IMAT content in semitendinosus may serve as a possible risk factor for impaired glucose metabolism.

Open access
Charissa van Zwol-Janssens Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Charissa van Zwol-Janssens in
Google Scholar
PubMed
Close
,
Aglaia Hage Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Aglaia Hage in
Google Scholar
PubMed
Close
,
Kim van der Ham Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Kim van der Ham in
Google Scholar
PubMed
Close
,
Birgitta K Velthuis Department of Radiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands

Search for other papers by Birgitta K Velthuis in
Google Scholar
PubMed
Close
,
Ricardo P J Budde Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Ricardo P J Budde in
Google Scholar
PubMed
Close
,
Maria P H Koster Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Maria P H Koster in
Google Scholar
PubMed
Close
,
Arie Franx Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Arie Franx in
Google Scholar
PubMed
Close
,
Bart C J M Fauser Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht & University of Utrecht, Utrecht, the Netherlands

Search for other papers by Bart C J M Fauser in
Google Scholar
PubMed
Close
,
Eric Boersma Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Eric Boersma in
Google Scholar
PubMed
Close
,
Daniel Bos Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Daniel Bos in
Google Scholar
PubMed
Close
,
Joop S E Laven Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Joop S E Laven in
Google Scholar
PubMed
Close
,
Yvonne V Louwers Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, the Netherlands

Search for other papers by Yvonne V Louwers in
Google Scholar
PubMed
Close
, and
the CREW consortium
Search for other papers by the CREW consortium in
Google Scholar
PubMed
Close
the CREW consortium

Besides age, estrogen exposure plays a crucial role in changes in bone density (BD) in women. Premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS) are conditions in reproductive-aged women in which the exposure to estrogen is substantially different. Women with a history of preeclampsia (PE) are expected to have normal estrogen exposure. Within the CREw-IMAGO study, we investigated if trabecular BD is different in these women because of differences in the duration of estrogen exposure. Trabecular BD was measured in thoracic vertebrae on coronary CT scans. Women with a reduced estrogen exposure (POI) have a lower BD compared to women with an intermediate exposure (PE) (mean difference (MD) −26.8, 95% CI −37.2 to −16.3). Women with a prolonged estrogen exposure (PCOS) have the highest BD (MD 15.0, 95% CI 4.3–25.7). These results support the hypothesis that the duration of estrogen exposure in these women is associated with trabecular BD.

Significance statement

Our results suggest that middle-aged women with PCOS have a higher BD and women with POI have a lower BD. We hypothesized that this is due to either a prolonged estrogen exposure, as seen in women with PCOS, or a reduced estrogen exposure, as in women with POI. In the counseling of women with reproductive disorders on long-term health issues, coronary CT provides a unique opportunity to assess both coronary artery calcium score for cardiovascular screening as well as trabecular BD.

Open access
Shi-en Fu Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Shi-en Fu in
Google Scholar
PubMed
Close
,
Rou-mei Wang Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Rou-mei Wang in
Google Scholar
PubMed
Close
,
Xing-huan Liang Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Xing-huan Liang in
Google Scholar
PubMed
Close
,
Jing Xian Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Jing Xian in
Google Scholar
PubMed
Close
,
Jie Pan Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Jie Pan in
Google Scholar
PubMed
Close
,
Xue-lan Chen Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Xue-lan Chen in
Google Scholar
PubMed
Close
,
Cheng-cheng Qiu Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Cheng-cheng Qiu in
Google Scholar
PubMed
Close
,
Zhi-ping Tang Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Zhi-ping Tang in
Google Scholar
PubMed
Close
,
Ying-fen Qin Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Ying-fen Qin in
Google Scholar
PubMed
Close
,
Hai-yan Yang Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Hai-yan Yang in
Google Scholar
PubMed
Close
,
Li-li Huang Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
Department of Endocrinology, The Affiliated Hospital of Guilin Medical University, Guilin, China

Search for other papers by Li-li Huang in
Google Scholar
PubMed
Close
,
Ya-qi Kuang Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Ya-qi Kuang in
Google Scholar
PubMed
Close
,
Yan Ma Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Yan Ma in
Google Scholar
PubMed
Close
, and
Zuo-jie Luo Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Zuo-jie Luo in
Google Scholar
PubMed
Close

Introduction

Chronic thyrotoxic myopathy (CTM) is a common, easily neglected complication of hyperthyroidism. There are currently no standard diagnostic criteria for CTM, and the ultrasonic characteristics of CTM-affected skeletal muscle remain unclear. Herein, we aimed to evaluate hyperthyroid patients for CTM by ultrasound and identify ultrasonic muscle parameter cutoffs for CTM diagnosis.

Materials and methods

Each participant underwent ultrasonography. The original (muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA)) and corrected (MT/height (HT), MT/body mass index (BMI), CSA/HT, and CSA/BMI) parameters of the vastus lateralis and vastus medialis (VM) were evaluated. The diagnostic effectiveness of ultrasound for predicting CTM was determined using receiver operating characteristic (ROC) curve analysis. Our study included 203 participants: 67 CTM patients (18 males, 49 females), 67 non-CTM patients (28 males, 39 females) and 69 healthy controls (20 males, 49 females).

Results

The CTM group had lower muscular ultrasonic and anthropometric parameters, higher thyroid hormone and thyroid-stimulating hormone receptor antibody (TRAb) levels, and a longer duration of hyperthyroidism than the non-CTM group (P < 0.05). The VM-PA, VM-CSA, VM-CSA/HT, and VM-CSA/BMI were lower in females than in males (P < 0.05). Free thyroxine (FT4) and TRAb both showed significant negative correlations with VM-MT, VM-MT/HT, VM-CSA, and VM-CSA/HT (P < 0.05). VM-MT/BMI and VM-CSA/HT, respectively, best predicted male and female CTM (AUC = 0.84, 0.85; cutoff ≤ 0.07, < 4.01).

Conclusion

Ultrasound measurement of muscular parameters, especially in the VM, is a valid and feasible way of diagnosing and characterizing possible CTM in hyperthyroidism.

Open access
Tsung-Hui Wu Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan

Search for other papers by Tsung-Hui Wu in
Google Scholar
PubMed
Close
,
Guan-Yu Su Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan

Search for other papers by Guan-Yu Su in
Google Scholar
PubMed
Close
,
Tsung-Yun Liu Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan

Search for other papers by Tsung-Yun Liu in
Google Scholar
PubMed
Close
,
Hsiang-Tsui Wang Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan

Search for other papers by Hsiang-Tsui Wang in
Google Scholar
PubMed
Close
, and
Chii-Min Hwu Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan

Search for other papers by Chii-Min Hwu in
Google Scholar
PubMed
Close

Acrolein, an unsaturated aldehyde, plays a pathological role in neurodegenerative diseases. However, less is known about its effects on peripheral neuropathy. The aim of this study was to investigate the association of acrolein and diabetic peripheral neuropathy in patients with type 2 diabetes. We recruited 148 ambulatory patients with type 2 diabetes. Each participant underwent an assessment of the Michigan Neuropathy Screening Instrument Physical Examination. Diabetic peripheral neuropathy was defined as Michigan Neuropathy Screening Instrument Physical Examination score ≥ 2.5. Serum levels and urinary levels of acrolein protein conjugates were measured. Urinary acrolein protein conjugates-to-creatinine ratios were determined. Patients with diabetic peripheral neuropathy had significantly higher urinary acrolein protein conjugates-to-creatinine ratios than those without diabetic peripheral neuropathy (7.91, 95% CI: 5.96–10.50 vs 5.31, 95% CI: 4.21–6.68, P = 0.029). Logarithmic transformation of urinary acrolein protein conjugates-to-creatinine ratios was positively associated with diabetic peripheral neuropathy in univariate logistic analysis, and the association remained significant in multivariate analysis (OR = 2.45, 95% CI: 1.12–5.34, P = 0.025). In conclusion, urinary acrolein protein conjugates-to-creatinine ratio may act as a new biomarker for diabetic peripheral neuropathy in type 2 diabetes. The involvement of acrolein in the pathogenesis of diabetic peripheral neuropathy warrants further investigation.

Open access
I M A A van Roessel Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Search for other papers by I M A A van Roessel in
Google Scholar
PubMed
Close
,
J P de Graaf Dutch Pituitary Foundation, Nijkerk, The Netherlands
Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Endo-ERN European Reference Network on Rare endocrine conditions

Search for other papers by J P de Graaf in
Google Scholar
PubMed
Close
,
N R Biermasz Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Endo-ERN European Reference Network on Rare endocrine conditions

Search for other papers by N R Biermasz in
Google Scholar
PubMed
Close
,
E Charmandari Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

Search for other papers by E Charmandari in
Google Scholar
PubMed
Close
, and
H M van Santen Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Search for other papers by H M van Santen in
Google Scholar
PubMed
Close

Objective

Hypothalamic dysfunction is a rare condition and can be encountered in patients who have been diagnosed or treated for a suprasellar brain tumor. Due to its rarity, the signs and symptoms of hypothalamic dysfunction may be difficult to recognize, leading to delayed diagnosis of the suprasellar brain tumor or to difficulties in finding the health-care expertise for hypothalamic dysfunction after tumor treatment. To improve the care and outcome of patients with acquired hypothalamic dysfunction, professionals are required to understand the patient’s needs.

Design

A worldwide online survey was distributed from April 2022 to October 2022 to patients with childhood-onset hypothalamic dysfunction (as reported by the patient) following a brain tumor.

Methods

Patients were notified about the survey through patient advocacy groups, the SIOPe craniopharyngioma working group and the Endo-ERN platform.

Results

In total, 353 patients with hypothalamic dysfunction following craniopharyngioma (82.2%), low-grade glioma (3.1%) or a pituitary tumor (8.2%) or caregivers responded to the survey. Sixty-two percent had panhypopituitarism. Obesity (50.7%) and fatigue (48.2%) were considered the most important health problems. Unmet needs were reported for help with diet, exercise and psychosocial issues. Patients’ suggestions for future research include new treatments for hypothalamic obesity and alternative ways for hormone administration.

Conclusions

According to the patient’s perspective, care for acquired hypothalamic dysfunction can be improved if delivered by experts with a holistic view of the patient in a multidisciplinary setting with a focus on quality of life. Future care and research on hypothalamic dysfunction must integrate the patients’ unmet needs.

Significance statement

Patients with hypothalamic dysfunction may experience a variety of symptoms, which are not always adequately recognized or addressed. In previous papers, the perspective of caregivers of children with craniopharyngioma has been reported (Klages et al. 2022, Craven et al. 2022). Now we address the patients’ perspective on acquired hypothalamic dysfunction using an Endo-ERN global survey. According to the patients’ perspective, care can be improved, with needs for improvement in the domains of obesity, fatigue and lifestyle. Research may focus on ways to improve hypothalamic obesity and alternative ways for hormone administration. Ideally, care should be delivered by doctors who have a holistic view of the patient in a multidisciplinary expert team. The results of this study can be used to formulate best practices for clinical care and to design future research proposals.

Open access
Lukas Plachy Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Close
,
Lenka Petruzelkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Close
,
Petra Dusatkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Close
,
Klara Maratova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Klara Maratova in
Google Scholar
PubMed
Close
,
Dana Zemkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Close
,
Lenka Elblova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Close
,
Vit Neuman Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Vit Neuman in
Google Scholar
PubMed
Close
,
Stanislava Kolouskova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Close
,
Barbora Obermannova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Close
,
Marta Snajderova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Close
,
Zdenek Sumnik Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Close
,
Jan Lebl Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Jan Lebl in
Google Scholar
PubMed
Close
, and
Stepanka Pruhova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
Close

Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤−2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader–Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH–insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent’s height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent’s heights ≤−2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent’s height and BA are clinical predictors of monogenic FSS.

Open access
Yijun Tang Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Yijun Tang in
Google Scholar
PubMed
Close
,
Yao Chen Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Yao Chen in
Google Scholar
PubMed
Close
,
Jiayi Wang Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Jiayi Wang in
Google Scholar
PubMed
Close
,
Qianwen Zhang Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Qianwen Zhang in
Google Scholar
PubMed
Close
,
Yirou Wang Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Yirou Wang in
Google Scholar
PubMed
Close
,
Yufei Xu Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Yufei Xu in
Google Scholar
PubMed
Close
,
Xin Li Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Xin Li in
Google Scholar
PubMed
Close
,
Jian Wang International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Jian Wang in
Google Scholar
PubMed
Close
, and
Xiumin Wang Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Xiumin Wang in
Google Scholar
PubMed
Close

Diagnosis and management strategy of disorders of sex development (DSD) are difficult and various due to heterogeneous phenotype and genotype. Under widespread use of genomic sequencing technologies, multiple genes and mechanisms have been identified and proposed as genetic causes of 46,XY DSD. In this study, 178 46,XY DSD patients were enrolled and underwent gene sequencing (either whole-exome sequencing or targeted panel gene sequencing). Detailed clinical phenotype and genotype information were summarized which showed that the most common clinical manifestations were micropenis (56.74%, 101/178), cryptorchidism (34.27%, 61/178), and hypospadias (17.42%, 31/178). Androgen synthesis/action disorders and idiopathic hypogonadotropic hypogonadism were the most frequent clinical diagnoses, accounting, respectively, for 40.90 and 21.59%. From all next-generation sequencing results, 103 candidate variants distributed across 32 genes were identified in 88 patients. The overall molecular detection rate was 49.44% (88/178), including 35.96% (64/178) pathogenic/likely pathogenic variants and 13.48% (24/178) variants of uncertain significance. Of all, 19.42% (20/103) variants were first reported in 46,XY DSD patients. Mutation c.680G>A (p.R227Q) on SRD5A2 (steroid 5-alpha-reductase 2) (36.67%, 11/30) was a hotspot mutation in the Chinese population. Novel candidate genes related to DSD (GHR (growth hormone receptor) and PHIP (pleckstrin homology domain-interacting protein)) were identified. Overall, this was a large cohort of 46,XY DSD patients with a common clinical classification and phenotype spectrum of Chinese patients. Targeted gene panel sequencing covered most of the genes contributing to DSD, whereas whole-exome sequencing detected more candidate genes.

Open access
Henry Zelada Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA

Search for other papers by Henry Zelada in
Google Scholar
PubMed
Close
,
M Citlalli Perez-Guzman Internal Medicine Division of Endocrinology, Centro Médico ABC, Mexico City, Mexico

Search for other papers by M Citlalli Perez-Guzman in
Google Scholar
PubMed
Close
,
Daniel R Chernavvsky Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Daniel R Chernavvsky in
Google Scholar
PubMed
Close
, and
Rodolfo J Galindo Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine. Miami, Florida, USA

Search for other papers by Rodolfo J Galindo in
Google Scholar
PubMed
Close

Over the last few years, several exciting changes in continuous glucose monitoring (CGM) technology have expanded its use and made CGM the standard of care for patients with type 1 and type 2 diabetes using insulin therapy. Consequently, hospitals started to notice increased use of these devices in their hospitalized patients. Furthermore during the coronavirus disease 2019 (COVID) pandemic, there was a critical need for innovative approaches to glycemic monitoring, and several hospitals started to implement CGM protocols in their daily practice. Subsequently, a plethora of studies have demonstrated the efficacy and safety of CGM use in the hospital, leading to clinical practice guideline recommendations. Several studies have also suggested that CGM has the potential to become the standard of care for some hospitalized patients, overcoming the limitations of current capillary glucose testing. Albeit, there is a need for more studies and particularly regulatory approval. In this review, we provide a historical overview of the evolution of glycemic monitoring in the hospital and review the current evidence, implementation protocols, and guidance for the use of CGM in hospitalized patients.

Open access
Yee-Ming M Cheung Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia
Division of Endocrinology, Diabetes and Metabolism, Northwell, Great Neck, New York, USA

Search for other papers by Yee-Ming M Cheung in
Google Scholar
PubMed
Close
,
Rudolf Hoermann Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Close
,
Karen Van Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Karen Van in
Google Scholar
PubMed
Close
,
Damian Wu Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Damian Wu in
Google Scholar
PubMed
Close
,
Jenny Healy Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Jenny Healy in
Google Scholar
PubMed
Close
,
Bella Halim Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Bella Halim in
Google Scholar
PubMed
Close
,
Manjri Raval Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Manjri Raval in
Google Scholar
PubMed
Close
,
Maria McGill Department of Radiology, Austin Health, Melbourne, Australia

Search for other papers by Maria McGill in
Google Scholar
PubMed
Close
,
Ali Al-Fiadh Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Cardiology, Austin Health, Melbourne Australia

Search for other papers by Ali Al-Fiadh in
Google Scholar
PubMed
Close
,
Michael Chao Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia

Search for other papers by Michael Chao in
Google Scholar
PubMed
Close
,
Shane White Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia

Search for other papers by Shane White in
Google Scholar
PubMed
Close
,
Belinda Yeo Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia
Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia

Search for other papers by Belinda Yeo in
Google Scholar
PubMed
Close
,
Jeffrey D Zajac Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Jeffrey D Zajac in
Google Scholar
PubMed
Close
, and
Mathis Grossmann Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Mathis Grossmann in
Google Scholar
PubMed
Close

Purpose

We previously demonstrated that 12 months of aromatase inhibitor (AI) treatment was not associated with a difference in body composition or other markers of cardiometabolic health when compared to controls. Here we report on the pre-planned extension of the study. The pre-specified primary hypothesis was that AI therapy for 24 months would lead to increased visceral adipose tissue (VAT) area when compared to controls.

Methods

We completed a 12-month extension to our prospective 12-month cohort study of 52 women commencing AI treatment (median age 64.5 years) and 52 women with breast pathology not requiring endocrine therapy (63.5 years). Our primary outcome of interest was VAT area. Secondary and exploratory outcomes included other measures of body composition, hepatic steatosis, measures of atherosclerosis and vascular reactivity. Using mixed models and the addition of a fourth time point, we increased the number of study observations by 79 and were able to rigorously determine the treatment effect.

Results

Among study completers (AI = 39, controls = 40), VAT area was comparable between groups over 24 months, the mean-adjusted difference was −1.54 cm2 (95% CI: −14.9; 11.9, P = 0.79). Both groups demonstrated parallel and continuous increases in VAT area over the observation period that did not diverge or change between groups. No statistically significant difference in our secondary and exploratory outcomes was observed between groups.

Conclusions

While these findings provide reassurance that short-to-medium-term exposure to AI therapy is not associated with metabolically adverse changes when compared to controls, risk evolution should be less focussed on the AI-associated effect and more on the general development of cardiovascular risk over time.

Open access
Bjarke R Medici Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

Search for other papers by Bjarke R Medici in
Google Scholar
PubMed
Close
,
Birte Nygaard Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Birte Nygaard in
Google Scholar
PubMed
Close
,
Jeppe L la Cour Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark

Search for other papers by Jeppe L la Cour in
Google Scholar
PubMed
Close
,
Martin Krakauer Department of Clinical Physiology and Nuclear Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Martin Krakauer in
Google Scholar
PubMed
Close
,
Andreas Brønden Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Andreas Brønden in
Google Scholar
PubMed
Close
,
Mette P Sonne Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark

Search for other papers by Mette P Sonne in
Google Scholar
PubMed
Close
,
Jens J Holst Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens J Holst in
Google Scholar
PubMed
Close
,
Jens F Rehfeld Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens F Rehfeld in
Google Scholar
PubMed
Close
,
Tina Vilsbøll Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Steno Diabetes Center Copenhagen, Herlev, Denmark

Search for other papers by Tina Vilsbøll in
Google Scholar
PubMed
Close
,
Jens Faber Department of Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close
, and
Filip K Knop Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Steno Diabetes Center Copenhagen, Herlev, Denmark

Search for other papers by Filip K Knop in
Google Scholar
PubMed
Close

Context

In individuals with hypothyroidism and overweight, levothyroxine substitution therapy is often expected to cause weight loss due to its effect on resting energy expenditure. However, despite levothyroxine-induced enhancement of resting energy expenditure, fat mass loss is rarely seen after levothyroxine substitution therapy. The mechanism behind this conundrum is unknown.

Aim

The aim of the study was to assess the effect of levothyroxine therapy on hunger sensations and ad libitum food intake in individuals with hypothyroidism.

Design and setting

Prospective cohort study of 18 newly diagnosed hypothyroid women (thyroid-stimulating hormone (TSH) >10 mU/L). Participants were investigated at diagnosis, after normalization of TSH (<4.0 mU/L), and after 6 months of successful treatment. Eighteen age and body mass index-matched healthy controls were also included.

Intervention

Hypothyroid individuals were treated with levothyroxine according to European Thyroid Association guidelines.

Main outcomes

Changes in hunger sensation were assessed using visual analog scales (cm) before and during a standardized mixed meal test, and food intake was measured during a subsequent ad libitum meal (g).

Results

After 6 months of levothyroxine therapy, mean resting energy expenditure was increased by 144 kcal/day (10%) (P < 0.001). Weight loss was comprised of 0.8 kg fat-free mass while fat mass remained unchanged. Fasting hunger sensation increased from a mean of 4.5 (s.d. 2.2) cm to 5.5 (s.d. 2.2) cm (P = 0.047). The numerical increase in ad libitum meal intake did not reach statistical significance.

Conclusion

Our data suggest that levothyroxine-induced hunger may be a culprit in the lack of fat mass loss from levothyroxine therapy.

Open access