The potential role of biomarkers in predicting gestational diabetes

in Endocrine Connections
View More View Less
  • 1 Department of Endocrinology, Maasstad Hospital, Rotterdam, The Netherlands
  • 2 Department of Endocrinology, Erasmus University MC, Rotterdam, The Netherlands

Gestational diabetes (GD) is a frequent complication during pregnancy and is associated with maternal and neonatal complications. It is suggested that a disturbing environment for the foetus, such as impaired glucose metabolism during intrauterine life, may result in enduring epigenetic changes leading to increased disease risk in adult life. Hence, early prediction of GD is vital. Current risk prediction models are based on maternal and clinical parameters, lacking a strong predictive value. Adipokines are mainly produced by adipocytes and suggested to be a link between obesity and its cardiovascular complications. Various adipokines, including adiponectin, leptin and TNF&, have shown to be dysregulated in GD. This review aims to outline biomarkers potentially associated with the pathophysiology of GD and discuss the role of integrating predictive biomarkers in current clinical risk prediction models, in order to enhance the identification of those at risk.

Abstract

Gestational diabetes (GD) is a frequent complication during pregnancy and is associated with maternal and neonatal complications. It is suggested that a disturbing environment for the foetus, such as impaired glucose metabolism during intrauterine life, may result in enduring epigenetic changes leading to increased disease risk in adult life. Hence, early prediction of GD is vital. Current risk prediction models are based on maternal and clinical parameters, lacking a strong predictive value. Adipokines are mainly produced by adipocytes and suggested to be a link between obesity and its cardiovascular complications. Various adipokines, including adiponectin, leptin and TNF&, have shown to be dysregulated in GD. This review aims to outline biomarkers potentially associated with the pathophysiology of GD and discuss the role of integrating predictive biomarkers in current clinical risk prediction models, in order to enhance the identification of those at risk.

Introduction

Gestational diabetes (GD) is defined as any glucose intolerance with onset or first recognition during pregnancy. GD has a prevalence of 7% worldwide, depending on the population studied and diagnostic criteria used (1). The incidence of GD is increasing in line with the global rise of obesity and type 2 diabetes mellitus (T2DM) (2). GD occurs when &-cells cannot compensate for the increased levels of insulin resistance (3). Insulin resistance and &-cell dysfunction are two known mechanisms; however, the exact cellular mechanisms remain to be elucidated (4). GD is associated with maternal and neonatal short- and long-term complications (5, 6). For the offspring, this includes a predisposition for development of obesity and T2DM (7, 8). Long-term maternal risks include T2DM and cardiovascular disease (9). Currently, the GD diagnosis is made during the late second trimester, possibly exposing the infant to intrauterine metabolic alterations and epigenetic programming for a significant period of time. Reported evidence suggests that metabolic alterations can predispose infants to long-term pathology (10, 11). Detection and management of GD in pregnancy can reduce the frequency of adverse pregnancy outcome (12, 13). Hence, there is need to predict and detect GD earlier in pregnancy in order to limit the exposure to impaired glucose metabolism. Investigating the role of adipokines associated with the pathophysiology of GD has gained interest (14, 15). In recent years, adipokines have been posed as the link between adiposity and adverse complications such as insulin resistance. Identification of early biomarkers in pregnant women, who subsequently develop GD, may result in improved understanding of GD pathogenesis. Combining biomarkers and risk factors into a predictive model may add to early prediction of GD, evoke effective prevention strategies and may ultimately reduce complications associated with GD.

The aim of this review is to (1) identify potential predictive biomarkers in GD and (2) discuss the role of incorporating predictive biomarkers into clinical risk prediction models, for the stratification of high-risk patients.

Epigenetic footprint

Metabolic alterations such as impaired glycaemic control during foetal development can lead to functional and structural alterations in the foetus, resulting in a predisposition for developing chronic metabolic diseases later in life. These alterations are also referred to as ‘foetal programming’ and they can cause epigenetic changes (10).

Epigenetic changes ascribe to the change in the biochemical structure of DNA that ultimately alters gene expression. This includes DNA methylation, histone modification and non-coding RNA processes (16). Epigenetic changes have been observed in many disease states and offer biochemical evidence of the detrimental effects of adverse developmental conditions and subsequent disease (10). This relationship has been supported by epidemiologic and animal studies (17, 18, 19, 20). Furthermore, it has been reported that maternal insulin resistance also causes insulin resistance in the foetus, as early as the embryonic stage (21). Multiple studies have linked maternal GD with the development of obesity and T2DM in children (11, 22), who are eight times more likely to develop T2DM than non-GD children (23). Therefore, there is a strong need for early detection of GD. Detection preceding the hyperglycaemia might avoid subsequent harm. Investigating early predictive biomarkers in GD may be a step in this direction.

Obesity, inflammation and GD

More women of childbearing age are entering pregnancy being overweight or obese (24). Obese pregnant women have a three-fold risk for developing GD (25). The global increase in GD is largely attributed to the ongoing obesity pandemic (26). Obesity is characterized by altered production of proinflammatory cytokines by adipocytes causing a state of chronic low-grade inflammation (27). It drives the expression and production of proinflammatory (TNF-alpha and IL-6) and anti-inflammatory cytokines or adipokines (adiponectin, leptin and visfatin) (28). Adipokines have a clear regulatory role in metabolism, including modifying insulin secretion and sensitivity, appetite, energy control and inflammation (29). Clinical and epidemiologic studies have described a sound relationship between obesity, chronic low-grade inflammation and the development of T2DM (30). In normal pregnancy, the immune system is subjected to changes with a delicate balance between production of pro- and anti-inflammatory cytokines. Pregnancies in obese individuals further enhance the proinflammatory profile leading to an imbalance and, therefore, possible complications. It is increasingly being recognized that inflammation is also a feature of GD (31, 32). In GD, a proinflammatory state prevails and the increased production of proinflammatory cytokines debilitates insulin signalling (33). Previously, it has been reported that a downregulation of adiponectin and anti-inflammatory markers such as IL-4 and IL-10 and an enhanced production of proinflammatory cytokines such as IL-6 and TNF-& can be observed in GD (33, 34).

Adipokines

Adiponectin

Adiponectin is an adipocyte-derived protein. It contains anti-atherogenic, anti-inflammatory and insulin-sensitizing properties (35). Adiponectin is inversely correlated with obesity, hypertension, serum lipids and coronary artery disease (35, 36). Decreased adiponectin levels have also been associated with an increased risk of T2DM (37, 38). Adiponectin levels are known to decrease progressively during normal pregnancies, probably in response to decreased insulin sensitivity (39). Several studies have also shown reduced adiponectin levels during mid-pregnancy (24–28 weeks) in GD compared with controls (40, 41, 42, 43, 44, 45), relating low levels of adiponectin to the onset of insulin resistance and diminished B-cell function (46). A systematic review and meta-analysis of adiponectin concentrations in 560 GD patients and 781 controls underlined a significantly decreased adiponectin level in GD patients vs controls (45). However, it must be noted that results are in light of a significant heterogeneity among the included studies. In recent years, prospective studies have addressed the role of adiponectin as a possible early predictor of GD. Lower levels of adiponectin in the first trimester of pregnancy are associated with a greater risk for developing GD (47, 48, 49), suggesting that a downregulation of adiponectin may be a predictor of GD. However, in a systematic review and meta-analysis, adiponectin had a moderate effect for predicting future GD with pooled diagnostic odds ratio (DOR) of 6.4 (95% CI: 4.1, 9.9), a summary sensitivity of 64.7% (95% CI: 51.0%, 76.4%) and a specificity of 77.8% (95% CI: 66.4%, 86.1%) (50). Furthermore, a nested case–control study showed that low pre-pregnancy adiponectin levels are associated with a 5.0-fold increased risk of developing GD (51). This association remained significant after adjusting for known risk factors for GD. This might be relevant for clinical practice as it identifies a group of high-risk women that might otherwise not have been identified. Adiponectin therapy has been tested in animal models of obesity and it has been shown to improve glycaemia and reduce hyperinsulinaemia without alterations in body weight (52).

In summary, lower levels of adiponectin are linked to obesity, type 2 diabetes and GD. Adiponectin might play a role in the pathophysiology of GD and can be seen as a promising predictive biomarker for GD. Further research addressing lifestyle interventions or adiponectin intervention therapy is needed to further establish the role of adiponectin in GD.

Leptin

Leptin is an adipocyte-derived hormone. It is predominantly produced by adipocytes but is also produced in ovaries and the placenta. It regulates energy balance through hypothalamic pathways (53). Increased leptin concentrations are associated with weight gain, obesity and hyperinsulinaemia (54). Maternal leptin levels are known to increase two- to three-fold in pregnancy, likely due to placental secretion (55). Increased leptin levels have been reported in women with GD (45). Inflammatory markers such as IL-6 and TNF-& probably also play a role in the pathophysiology of GD by promoting chronic low-grade inflammation, while further increasing leptin concentrations (56). A prospective cohort study reported increased concentrations of leptin before 16 weeks of gestation, independent of adiposity, which were associated with an increased risk of GD (57). Another small study showed that leptin was increased in all women during pregnancy, with the highest concentrations in obese GD subjects. Adjusted for fat mass, this correlation disappeared, however (33). Generally speaking, current evidence is limited, in part due to confounding effects of measures of adiposity. Leptin is likely to be involved in the pathophysiology of GD but appears to be a poor predictor of GD.

Visfatin

Visfatin is an adipokine and is mostly produced by visceral fat. It has endocrine, paracrine and autocrine actions (58). Increased visfatin levels have been reported in obesity, metabolic syndrome and T2DM (59, 60). In pregnancy, visfatin levels progressively increase up to the second trimester, after which they decrease again with the lowest concentrations observed in the third trimester (61). In GD, reports on visfatin levels have thus far been inconsistent, as both decreased and increased levels have been reported (62, 63, 64). Another study showed that visfatin measured in the first trimester was better in the prediction of GD compared with CRP, Il-6, adiponectin and leptin (65). In a case–control study, visfatin levels measured in the first trimester were increased in the GD group, but when added to other maternal risk factors, the GD detection rate did not improve (66). Results thus far suggest that visfatin is a potential biomarker in GD, but additional prospective studies are definitely needed to further investigate the relationship between visfatin and GD.

Resistin

Resistin is an adipose-derived hormone expressed by monocytes, macrophages and adipocytes (67). Resistin is positively associated with adiposity. Resistin levels are known to increase during pregnancy, probably due to weight gain (56, 68). A potential link between resistin, adiposity and insulin resistance in pregnancy might exist but to date remains inconclusive due to conflicting reports from case–control studies (69, 70). Nested case–control studies, investigating resistin levels in early pregnancy, found no differences in resistin levels between GD and controls (adjusted for BMI) (34, 49). A prospective study with larger sample size than the previous case–control studies also showed no significant association between resistin and GD (71). Other studies have shown elevated maternal levels of resistin in GD (68, 69, 72). A systematic review showed no significant association between resistin levels and GD pregnancies (73). Significant heterogeneity among studies was a major issue in the analysis. Currently, there is no sound evidence that resistin is involved in the pathophysiology or prediction of GD.

Other inflammatory mediators

TNFα

TNF& is a proinflammatory cytokine and is produced by monocytes and macrophages. It affects insulin sensitivity and secretion through impairing B-cell function and insulin signalling pathways, resulting in insulin resistance and possibly GD (74). Multiple studies have reported increased maternal TNF& levels in subjects with GD, predominantly in late pregnancy (75, 76, 77). A meta-analysis also showed increased TNF-& levels in GD vs controls. Subgroup analysis revealed that this relationship remained significant when compared with BMI-matched controls (45). The increased levels are thought to be due to increased oxidative stress and inflammation associated with impaired glucose metabolism (78). A small nested case–control study with only 14 cases and 14 controls addressing the predictive value of TNF& showed no differences between women with GD and controls (34). In a prospective study in GD and controls, TNF& levels were measured pre-gravid, at 12–14 weeks and 34–36 weeks. TNF& levels were increased at 34–36 weeks of gestation and were inversely correlated with insulin sensitivity (33). Further prospective studies are required to investigate the predictive value of TNF& in GD, adjusting for measures of adiposity.

High-sensitivity C-reactive protein (hsCRP)

hsCRP is an acute-phase protein and is produced in response to tissue injury, inflammation and infection. CRP has been shown to be associated with obesity and diabetes mellitus. In turn, it is well known that obesity is associated with inflammation, which contributes to insulin resistance. Elevated first-trimester CRP levels are associated with GD risk (P for trend = 0.007). After adjusting for pre-pregnancy BMI, family history of DM and nulliparity, women with CRP in the highest quartile had a 3.5-fold increased risk of GD compared with those in the lowest quartile (32). Wolf and coworkers also reported that first-trimester CRP levels were significantly increased among women who subsequently developed GD compared with control subjects (3.1 vs 2.1 mg/L, P < 0.01) (31). After adjusting for age, race/ethnicity, smoking, parity, blood pressure and gestational age at CRP sampling, the increased risk of developing GD among women in the highest tertile compared with the lowest tertile was 3.6 times higher (95% CI: 1.2–11.4). When adjusted for BMI, this association was not found anymore, however (79). Berggren and coworkers evaluated whether first-trimester hsCRP was predictive for third-trimester impaired glucose tolerance (IGT). hsCRP was positively associated with IGT, but, again, the association disappeared when adjusted for BMI (80). Thus far, the positive association of (hs)CRP and GD seems to be in part mediated by BMI.

Sex hormone-binding globulin (SHBG)

SHBG is a glycoprotein and plays a role in the regulation and transport of sex hormones. In vitro, SHBG has been proposed as a marker in insulin resistance as it has shown that insulin and insulin-like growth factor cause inhibition of SHBG secretion (81). Indeed, a relationship between low levels of SHBG and T2DM has been reported (82). A prospective cross-sectional study evaluating the serum SHBG levels reported that SHBG concentrations were significantly lower in GD subjects than in normal pregnancies (83). Furthermore, in women who were treated with insulin, SHBG levels were reported to be even lower (84). This might suggest that SHBG could help to differentiate or predict the women who will require insulin therapy. The overall additional clinical and predictive value of these results is limited as testing on GD is already routinely performed at this stage of pregnancy. A prospective observational study (n = 269) evaluating several biomarkers earlier than 15 weeks of gestation showed that low levels of SHBG were associated with an increased risk of GD. This association was independent of other risk factors (BMI, smoking and blood pressure). Using the cut-off value of 211.5 mmol/L, SHBG showed an acceptable sensitivity of 85% but a low specificity of 37%. Adding hs-CRP increases the specificity to 75.46%, however (85). Another prospective cross-sectional study, addressing the predictive value of SHBG for the diagnosis of GD, reported that low levels of SHBG assessed between 13 and 16 weeks of gestation were positively associated with the development of GD (n = 30) (P < 0.01) (86). A limitation in this study, however, was that they could not establish an SHBG cut-off value for a constant term of pregnancy. A nested case–control study showed that non-fasting SHBG in the first trimester was consistently associated with an increased risk for GD (15).

Other potential biomarkers

Adipocyte fatty acid-binding protein (AFABP) is an independent risk predictor for metabolic syndrome, T2DM and cardiovascular disease (87). Two studies have reported increased concentrations in GD (88, 89). Studies investigating the predictive value of AFABP in GD have not been performed to date, however. IL-6 is a proinflammatory cytokine and is increased in obesity and associated with indices of adiposity and insulin resistance, such as body mass index (BMI) (90, 91). Controversy exists regarding the changes in circulating levels of IL-6 in obesity. The relationship between IL-6 and insulin action appears to be regulated via adiposity (92). However, in a case–control study, plasma IL-6 levels have shown to be elevated when adjusted for BMI in women with GD (93). Low levels of vitamin D have been associated in obesity and type 2 diabetes. In pregnancy, low levels are also often observed (94). Low vitamin D levels in the first trimester were also associated with a higher risk for GD (adjusted for confounders and risk factors) (94). Recent meta-analyses have supported this finding, but the included studies were not all randomized controlled (95). Future RCTs are needed to further clarify the predictive role of vitamin D.

Clinical prediction models incorporating biomarkers

Current screening methods only identify women who already have impaired glucose metabolism. Ideally, subjects with high risk of GD should be identified before they exceed the oral glucose tolerance test (OGTT) threshold values. Early prediction would allow for timely intervention that could limit gestational weight gain and obesity and possibly the onset of GD. Current screening methods have moderate detection rates (96, 97). Clinical risk prediction models have been investigated in GD. For example, the development of GD can be predicted from the ethnicity, family history, history of GD and body mass index. The model showed an area under the receiver operating characteristic curve of 0.77 (95% CI: 0.69–0.85) (98). If an OGTT was performed in all women with a predicted probability of 2% or more, 43% of all women would be tested and 75% of the women with GD would be identified (98). Furthermore, in a large prospective cohort (n = 7929), the best performing model, based on ethnicity, BMI, family history of diabetes and history of GD, showed a sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GD cases requiring insulin therapy (99). Introducing biomarkers to a set of clinical risk factors may enhance predication rates. For example, tissue plasminogen activator (t-PA) and low HDL cholesterol were independent significant predictors of GD. The addition of these biomarkers to a set of demographic and clinical risk factors increased the area under the curve (ROC) from 0.824 to 0.861 (100). t-PA in the prediction of GD is a novel finding, but previous work has shown that t-PA is associated with an increased risk of T2DM (101). Another study demonstrated that elevated plasma insulin and reduced adiponectin levels in the first trimester improved GD identification rates compared with clinical factors alone (34). Maternal risk factors alone showed a prediction rate of 61% for GD, adding adiponectin and SHBG increased detection rates to 74% (14). Investigators in another study showed that adding adiponectin to a set of clinical risk factors increased the area under the receiver operating curve increased significantly (102). Adding maternal visfatin and adiponectin to a set of maternal risk factors showed a detection rate of 68% (95% CI: 58.3–76.3%) (66). The clinical implementation of such multi-parametric prediction models depends on significant reduction in adverse pregnancy outcomes, practical acceptability and cost-effectiveness. Ultimately, these models require prospective validation studies and further identification of predictive threshold values for these biomarkers.

Conclusion

Gestational diabetes is currently detected in late pregnancy, unnecessarily exposing the infant to harmful intrauterine conditions. There is a definite clinical need to better predict and detect GD early in pregnancy in order to prevent further harm to mother and child. Adiponectin is probably one of the most promising candidate in the prediction of GD. The clinical value of implementing a combined clinical model is questionable as the current level of evidence is weak due to study design, differences in diagnostic criteria and assay methods used. Well-designed prospective studies addressing current limitations are needed to identify reliable predictive biomarkers in GD and their additional value to current clinical prediction tools.

Declaration of interest

Huguette S Brink, Aart Jan van der Lely and Joke van der Linden have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author contribution statement

Huguette S Brink wrote the manuscript. Aart Jan van der Lely supervised and reviewed the manuscript. Joke van der Linden supervised and critically reviewed the manuscript.

Acknowledgements

H S Brink, A J van der Lely and J van der Linden contributed equally to this work.

References

  • 1

    Galtier F. Definition, epidemiology, risk factors. Diabetes and Metabolism 2010 36 628651. (doi:10.1016/j.diabet.2010.11.014)

  • 2

    Tamayo T, Rosenbauer J, Wild SH, Spijkerman AM, Baan C, Forouhi NG, Herder C & Rathmann W. Diabetes in Europe: an update. Diabetes Research and Clinical Practice 2014 103 206217. (doi:10.1016/j.diabres.2013.11.007)

    • Search Google Scholar
    • Export Citation
  • 3

    Catalano PM. Carbohydrate metabolism and gestational diabetes. Clinical Obstetrics and Gynecology 1994 37 2538. (doi:10.1097/00003081-199403000-00007)

    • Search Google Scholar
    • Export Citation
  • 4

    Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. American Journal of Clinical Nutrition 2000 71 (Supplement 5) 1256S1261S.

    • Search Google Scholar
    • Export Citation
  • 5

    Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, Hod M, Kitzmiller JL, Kjos SL & Oats JN Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes Care 2007 30 (Supplement 2) S251S260. (doi:10.2337/dbib7-s225)

    • Search Google Scholar
    • Export Citation
  • 6

    Bellamy L, Casas JP, Hingorani AD & Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009 373 17731779. (doi:10.1016/s0140-6736(09)60731-5)

    • Search Google Scholar
    • Export Citation
  • 7

    Kim SY, England JL, Sharma JA & Njoroge T. Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Experimental Diabetes Research 2011 2011 541308. (doi:10.1155/2011/541308)

    • Search Google Scholar
    • Export Citation
  • 8

    Van Assche FA, Aerts L & Holemans K. Maternal diabetes and the effect for the offspring. Verhandelingen – Koninklijke Academie voor Geneeskunde van België 1992 54 95106.

    • Search Google Scholar
    • Export Citation
  • 9

    Hopmans TE, van Houten C, Kasius A, Kouznetsova OI, Nguyen LA, Rooijmans SV, Voormolen DN, van Vliet EO, Franx A & Koster MP. Increased risk of type II diabetes mellitus and cardiovascular disease after gestational diabetes mellitus: a systematic review. Nederlands Tijdschrift voor Geneeskunde 2015 159 A8043.

    • Search Google Scholar
    • Export Citation
  • 10

    Hanson MA & Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiological Reviews 2014 94 10271076. (doi:10.1152/physrev.00029.2013)

    • Search Google Scholar
    • Export Citation
  • 11

    Plagemann A. Maternal diabetes and perinatal programming. Early Human Development 2011 87 743747. (doi:10.1016/j.earlhumdev.2011.08.018)

  • 12

    Horvath K, Koch K, Jeitler K, Matyas E, Bender R, Bastian H, Lange S & Siebenhofer A. Effects of treatment in women with gestational diabetes mellitus: systematic review and meta-analysis. BMJ 2010 340 c1395. (doi:10.1136/bmj.c1395)

    • Search Google Scholar
    • Export Citation
  • 13

    Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS & Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. New England Journal of Medicine 2005 352 24772486. (doi:10.1056/NEJMoa042973)

    • Search Google Scholar
    • Export Citation
  • 14

    Nanda S, Savvidou M, Syngelaki A, Akolekar R & Nicolaides KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenatal Diagnosis 2011 31 135141. (doi:10.1002/pd.2636)

    • Search Google Scholar
    • Export Citation
  • 15

    Smirnakis KV, Plati A, Wolf M, Thadhani R & Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. American Journal of Obstetrics and Gynecology 2007 196 410.e1410.e7. (doi:10.1016/j.ajog.2006.12.011)

    • Search Google Scholar
    • Export Citation
  • 16

    Nistala R, Hayden MR, Demarco VG, Henriksen EJ, Lackland DT & Sowers JR. Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome. Cardiorenal Medicine 2011 1 243254. (doi:10.1159/000332756)

    • Search Google Scholar
    • Export Citation
  • 17

    Reynolds CM, Gray C, Li M, Segovia SA & Vickers MH. Early life nutrition and energy balance disorders in offspring in later life. Nutrients 2015 7 80908111. (doi:10.3390/nu7095384)

    • Search Google Scholar
    • Export Citation
  • 18

    Langley-Evans SC, Bellinger L & McMullen S. Animal models of programming: early life influences on appetite and feeding behaviour. Maternal and Child Nutrition 2005 1 142148. (doi:10.1111/j.1740-8709.2005.00015.x)

    • Search Google Scholar
    • Export Citation
  • 19

    Langley-Evans SC. Metabolic programming in pregnancy: studies in animal models. Genes & Nutrition 2007 2 3338. (doi:10.1007/s12263-007-0005-x)

    • Search Google Scholar
    • Export Citation
  • 20

    Godfrey KM, Gluckman PD & Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends in Endocrinology and Metabolism 2010 21 199205. (doi:10.1016/j.tem.2009.12.008)

    • Search Google Scholar
    • Export Citation
  • 21

    Cardozo E, Pavone ME & Hirshfeld-Cytron JE. Metabolic syndrome and oocyte quality. Trends in Endocrinology and Metabolism 2011 22 103109. (doi:10.1016/j.tem.2010.12.002)

    • Search Google Scholar
    • Export Citation
  • 22

    Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM & Dabelea D. The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: the EPOCH study. Journal of Pediatrics 2011 158 941946. (doi:10.1016/j.jpeds.2010.12.007)

    • Search Google Scholar
    • Export Citation
  • 23

    Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J & Damm P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 2008 31 340346. (doi:10.2337/dbib7-1596)

    • Search Google Scholar
    • Export Citation
  • 24

    Siega-Riz AM, Siega-Riz AM & Laraia B. The implications of maternal overweight and obesity on the course of pregnancy and birth outcomes. Maternal and Child Health Journal 2006 10 (Supplement 5) S153S156. (doi:10.1007/s10995-006-0115-x)

    • Search Google Scholar
    • Export Citation
  • 25

    Teh WT, Teede HJ, Paul E, Harrison CL, Wallace EM & Allan C. Risk factors for gestational diabetes mellitus: implications for the application of screening guidelines. Australian and New Zealand Journal of Obstetrics and Gynaecology 2011 51 2630. (doi:10.1111/j.1479-828X.2011.01292.x)

    • Search Google Scholar
    • Export Citation
  • 26

    Ben-Haroush A, Yogev Y & Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabetic Medicine 2004 21 103113. (doi:10.1046/j.1464-5491.2003.00985.x)

    • Search Google Scholar
    • Export Citation
  • 27

    Permana PA, Menge C & Reaven PD. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochemical and Biophysical Research Communications 2006 341 507514. (doi:10.1016/j.bbrc.2006.01.012)

    • Search Google Scholar
    • Export Citation
  • 28

    Fantuzzi G. Adipose tissue, adipokines, and inflammation. Journal of Allergy and Clinical Immunology 2005 115 911919. (doi:10.1016/j.jaci.2005.02.023)

    • Search Google Scholar
    • Export Citation
  • 29

    Kralisch S, Bluher M, Paschke R, Stumvoll M & Fasshauer M. Adipokines and adipocyte targets in the future management of obesity and the metabolic syndrome. Mini-Reviews in Medicinal Chemistry 2007 7 3945. (doi:10.2174/138955707779317821)

    • Search Google Scholar
    • Export Citation
  • 30

    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006 444 860867. (doi:10.1038/nature05485)

  • 31

    Wolf M, Sauk J, Shah A, Vossen Smirnakis K, Jimenez-Kimble R, Ecker JL & Thadhani R. Inflammation and glucose intolerance: a prospective study of gestational diabetes mellitus. Diabetes Care 2004 27 2127. (doi:10.2337/diacare.27.1.21)

    • Search Google Scholar
    • Export Citation
  • 32

    Qiu C, Sorensen TK, Luthy DA & Williams MA. A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatric and Perinatal Epidemiology 2004 18 377384. (doi:10.1111/j.1365-3016.2004.00578.x)

    • Search Google Scholar
    • Export Citation
  • 33

    Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC & Catalano PM. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002 51 22072213. (doi:10.2337/diabetes.51.7.2207)

    • Search Google Scholar
    • Export Citation
  • 34

    Georgiou HM, Lappas M, Georgiou GM, Marita A, Bryant VJ, Hiscock R, Permezel M, Khalil Z & Rice G. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetologica 2008 45 157165. (doi:10.1007/s00592-008-0037-8)

    • Search Google Scholar
    • Export Citation
  • 35

    Chandran M, Phillips SA, Ciaraldi T & Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003 26 24422450. (doi:10.2337/diacare.26.8.2442)

    • Search Google Scholar
    • Export Citation
  • 36

    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T & Miyaoka K Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochemical and Biophysical Research Communications 2012 425 560564. (doi:10.1016/j.bbrc.2012.08.024)

    • Search Google Scholar
    • Export Citation
  • 37

    Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H & Pfeiffer AF. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003 361 226228. (doi:10.1016/S0140-6736(03)12255-6)

    • Search Google Scholar
    • Export Citation
  • 38

    Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A & Kohno N. Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. Journal of Clinical Endocrinology and Metabolism 2006 91 38733877. (doi:10.1210/jc.2006-1158)

    • Search Google Scholar
    • Export Citation
  • 39

    Galic S, Oakhill JS & Steinberg GR. Adipose tissue as an endocrine organ. Molecular and Cellular Endocrinology 2010 316 129139. (doi:10.1016/j.mce.2009.08.018)

    • Search Google Scholar
    • Export Citation
  • 40

    Doruk M, Ugur M, Oruc AS, Demirel N & Yildiz Y. Serum adiponectin in gestational diabetes and its relation to pregnancy outcome. Journal of Obstetrics and Gynaecology 2014 34 471475. (doi:10.3109/01443615.2014.902430)

    • Search Google Scholar
    • Export Citation
  • 41

    Pala HG, Ozalp Y, Yener AS, Gerceklioglu G, Uysal S & Onvural A. Adiponectin levels in gestational diabetes mellitus and in pregnant women without glucose intolerance. Advances in Clinical and Experimental Medicine 2015 24 8592. (doi:10.17219/acem/38141)

    • Search Google Scholar
    • Export Citation
  • 42

    Tsai PJ, Yu CH, Hsu SP, Lee YH, Huang IT, Ho SC & Chu CH. Maternal plasma adiponectin concentrations at 24 to 31 weeks of gestation: negative association with gestational diabetes mellitus. Nutrition 2005 21 10951099. (doi:10.1016/j.nut.2005.03.008)

    • Search Google Scholar
    • Export Citation
  • 43

    Soheilykhah S, Mohammadi M, Mojibian M, Rahimi-Saghand S, Rashidi M, Hadinedoushan H & Afkhami-Ardekani M. Maternal serum adiponectin concentration in gestational diabetes. Gynecological Endocrinology 2009 25 593596. (doi:10.1080/09513590902972109)

    • Search Google Scholar
    • Export Citation
  • 44

    Ramirez VI, Miller E, Meireles CL, Gelfond J, Krummel DA & Powell TL. Adiponectin and IGFBP-1 in the development of gestational diabetes in obese mothers. BMJ Open Diabetes Research & Care 2014 2 e000010. (doi:10.1136/bmjdrc-2013-000010)

    • Search Google Scholar
    • Export Citation
  • 45

    Xu J, Zhao YH, Chen YP, Yuan XL, Wang J, Zhu H & Lu CM. Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Scientific World Journal 2014 2014 926932. (doi:10.1155/2014/926932)

    • Search Google Scholar
    • Export Citation
  • 46

    Wojcik M, Chmielewska-Kassassir M, Grzywnowicz K, Wozniak L & Cypryk K. The relationship between adipose tissue-derived hormones and gestational diabetes mellitus (GDM). Endokrynologia Polska 2014 65 134142. (doi:10.5603/EP.2014.0019)

    • Search Google Scholar
    • Export Citation
  • 47

    Lacroix M, Battista MC, Doyon M, Menard J, Ardilouze JL, Perron P & Hivert MF. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care 2013 36 15771583. (doi:10.2337/dc12-1731)

    • Search Google Scholar
    • Export Citation
  • 48

    Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T & Luthy DA. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2004 89 23062311. (doi:10.1210/jc.2003-031201)

    • Search Google Scholar
    • Export Citation
  • 49

    Lain KY, Daftary AR, Ness RB & Roberts JM. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clinical Endocrinology 2008 69 407411. (doi:10.1111/j.1365-2265.2008.03198.x)

    • Search Google Scholar
    • Export Citation
  • 50

    Iliodromiti S, Sassarini J, Kelsey TW, Lindsay RS, Sattar N & Nelson SM. Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis. Diabetologia 2016 59 692699. (doi:10.1007/s00125-015-3855-6)

    • Search Google Scholar
    • Export Citation
  • 51

    Hedderson MM, Darbinian J, Havel PJ, Quesenberry CP, Sridhar S, Ehrlich S & Ferrara A. Low prepregnancy adiponectin concentrations are associated with a marked increase in risk for development of gestational diabetes mellitus. Diabetes Care 2013 36 39303937. (doi:10.2337/dc13-0389)

    • Search Google Scholar
    • Export Citation
  • 52

    Ukkola O & Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? Journal of Molecular Medicine 2002 80 696702. (doi:10.1007/s00109-002-0378-7)

    • Search Google Scholar
    • Export Citation
  • 53

    Wauters M, Considine RV & Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator. European Journal of Endocrinology 2000 143 293311. (doi:10.1530/eje.0.1430293)

    • Search Google Scholar
    • Export Citation
  • 54

    Fasshauer M, Bluher M & Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes & Endocrinology 2014 2 488499. (doi:10.1016/s2213-8587(13)70176-1)

    • Search Google Scholar
    • Export Citation
  • 55

    Briana DD & Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reproductive Sciences 2009 16 921937. (doi:10.1177/1933719109336614)

    • Search Google Scholar
    • Export Citation
  • 56

    Miehle K, Stepan H & Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clinical Endocrinology 2012 76 211. (doi:10.1111/j.1365-2265.2011.04234.x)

    • Search Google Scholar
    • Export Citation
  • 57

    Qiu C, Williams MA, Vadachkoria S, Frederick IO & Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstetrics & Gynecology 2004 103 519525. (doi:10.1097/01.aog.0000113621.53602.7a)

    • Search Google Scholar
    • Export Citation
  • 58

    Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Current Medicinal Chemistry 2008 15 18511862. (doi:10.2174/092986708785133004)

    • Search Google Scholar
    • Export Citation
  • 59

    Filippatos TD, Derdemezis CS, Gazi IF, Lagos K, Kiortsis DN, Tselepis AD & Elisaf MS. Increased plasma visfatin levels in subjects with the metabolic syndrome. European Journal of Clinical Investigation 2008 38 7172. (doi:10.1111/j.1365-2362.2007.01904.x)

    • Search Google Scholar
    • Export Citation
  • 60

    Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ & Lee YJ. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2006 91 295299. (doi:10.1210/jc.2005-1475)

    • Search Google Scholar
    • Export Citation
  • 61

    Mazaki-Tovi S, Romero R, Kusanovic JP, Vaisbuch E, Erez O, Than NG, Chaiworapongsa T, Nhan-Chang CL, Pacora P & Gotsch F Maternal visfatin concentration in normal pregnancy. Journal of Perinatal Medicine 2009 37 206217. (doi:10.1515/jpm.2009.054)

    • Search Google Scholar
    • Export Citation
  • 62

    Lewandowski KC, Stojanovic N, Press M, Tuck SM, Szosland K, Bienkiewicz M, Vatish M, Lewinski A, Prelevic GM & Randeva HS. Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance. Diabetologia 2007 50 10331037. (doi:10.1007/s00125-007-0610-7)

    • Search Google Scholar
    • Export Citation
  • 63

    Krzyzanowska K, Krugluger W, Mittermayer F, Rahman R, Haider D, Shnawa N & Schernthaner G. Increased visfatin concentrations in women with gestational diabetes mellitus. Clinical Science 2006 110 605609. (doi:10.1042/CS20050363)

    • Search Google Scholar
    • Export Citation
  • 64

    Akturk M, Altinova AE, Mert I, Buyukkagnici U, Sargin A, Arslan M & Danisman N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. Journal of Endocrinological Investigation 2008 31 610613. (doi:10.1007/BF03345611)

    • Search Google Scholar
    • Export Citation
  • 65

    Mastorakos G, Valsamakis G, Papatheodorou DC, Barlas I, Margeli A, Boutsiadis A, Kouskouni E, Vitoratos N, Papadimitriou A & Papassotiriou I The role of adipocytokines in insulin resistance in normal pregnancy: visfatin concentrations in early pregnancy predict insulin sensitivity. Clinical Chemistry 2007 53 14771483. (doi:10.1373/clinchem.2006.084731)

    • Search Google Scholar
    • Export Citation
  • 66

    Ferreira AF, Rezende JC, Vaikousi E, Akolekar R & Nicolaides KH. Maternal serum visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clinical Chemistry 2011 57 609613. (doi:10.1373/clinchem.2010.159806)

    • Search Google Scholar
    • Export Citation
  • 67

    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS & Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001 409 307312. (doi:10.1038/35053000)

    • Search Google Scholar
    • Export Citation
  • 68

    Palik E, Baranyi E, Melczer Z, Audikovszky M, Szocs A, Winkler G & Cseh K. Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance. Diabetes Research and Clinical Practice 2007 76 351357. (doi:10.1016/j.diabres.2006.09.005)

    • Search Google Scholar
    • Export Citation
  • 69

    Cortelazzi D, Corbetta S, Ronzoni S, Pelle F, Marconi A, Cozzi V, Cetin I, Cortelazzi R, Beck-Peccoz P & Spada A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clinical Endocrinology 2007 66 447453. (doi:10.1111/j.1365-2265.2007.02761.x)

    • Search Google Scholar
    • Export Citation
  • 70

    Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A & Gorska M. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecological Endocrinology 2009 25 258263. (doi:10.1080/09513590802653825)

    • Search Google Scholar
    • Export Citation
  • 71

    Lowe LP, Metzger BE, Lowe WL Jr, Dyer AR, McDade TW, McIntyre HD & HAPO Study Cooperative Research Group. Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Journal of Clinical Endocrinology and Metabolism 2010 95 54275434. (doi:10.1210/jc.2010-1662)

    • Search Google Scholar
    • Export Citation
  • 72

    Megia A, Vendrell J, Gutierrez C, Sabate M, Broch M, Fernandez-Real JM & Simón I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. European Journal of Endocrinology 2008 158 173178. (doi:10.1530/EJE-07-0671)

    • Search Google Scholar
    • Export Citation
  • 73

    Lobo TF, Torloni MR, Gueuvoghlanian-Silva BY, Mattar R & Daher S. Resistin concentration and gestational diabetes: a systematic review of the literature. Journal of Reproductive Immunology 2013 97 120127. (doi:10.1016/j.jri.2012.10.004)

    • Search Google Scholar
    • Export Citation
  • 74

    Cawthorn WP & Sethi JK. TNF-alpha and adipocyte biology. FEBS Letters 2008 582 117131. (doi:10.1016/j.febslet.2007.11.051)

  • 75

    Gao XL, Yang HX & Zhao Y. Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chinese Medical Journal 2008 121 701705.

    • Search Google Scholar
    • Export Citation
  • 76

    Lopez-Tinoco C, Roca M, Fernandez-Deudero A, Garcia-Valero A, Bugatto F, Aguilar-Diosdado M & Bartha JL. Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 2012 58 1419. (doi:10.1016/j.cyto.2011.12.004)

    • Search Google Scholar
    • Export Citation
  • 77

    Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, Miled A, Grissa A, Jerbi M & Tabka Z Modulation of adipokines and cytokines in gestational diabetes and macrosomia. Journal of Clinical Endocrinology and Metabolism 2006 91 41374143. (doi:10.1210/jc.2006-0980)

    • Search Google Scholar
    • Export Citation
  • 78

    Briana DD & Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reproductive Sciences 2009 16 921937. (doi:10.1177/1933719109336614)

    • Search Google Scholar
    • Export Citation
  • 79

    Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL & Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care 2003 26 819824. (doi:10.2337/diacare.26.3.819)

    • Search Google Scholar
    • Export Citation
  • 80

    Berggren EK, Roeder HA, Boggess KA, Moss K, Offenbacher S, Campbell E & Grotegut CA. First-trimester maternal serum C-reactive protein as a predictor of third-trimester impaired glucose tolerance. Reproductive Sciences 2015 22 9093. (doi:10.1177/1933719114532843)

    • Search Google Scholar
    • Export Citation
  • 81

    Pugeat M, Crave JC, Tourniaire J & Forest MG. Clinical utility of sex hormone-binding globulin measurement. Hormone Research 1996 45 148155. (doi:10.1159/000184778)

    • Search Google Scholar
    • Export Citation
  • 82

    Hu J, Zhang A, Yang S, Wang Y, Goswami R, Zhou H, Wang Z, Li R, Cheng Q & Zhen Q Combined effects of sex hormone-binding globulin and sex hormones on risk of incident type 2 diabetes. Journal of Diabetes 2015 8 508515. (doi:10.1111/1753-0407.12322)

    • Search Google Scholar
    • Export Citation
  • 83

    Bartha JL, Comino-Delgado R, Romero-Carmona R & Gomez-Jaen MC. Sex hormone-binding globulin in gestational diabetes. Acta Obstetricia et Gynecologica Scandinavica 2000 79 839845. (doi:10.1034/j.1600-0412.2000.079010839.x)

    • Search Google Scholar
    • Export Citation
  • 84

    Kopp HP, Festa A, Krugluger W & Schernthaner G. Low levels of sex-hormone-binding globulin predict insulin requirement in patients with gestational diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes 2001 109 365369. (doi:10.1055/s-2001-17408)

    • Search Google Scholar
    • Export Citation
  • 85

    Maged AM, Moety GA, Mostafa WA & Hamed DA. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. Journal of Maternal-Fetal & Neonatal Medicine 2014 27 11081112. (doi:10.3109/14767058.2013.850489)

    • Search Google Scholar
    • Export Citation
  • 86

    Caglar GS, Ozdemir ED, Cengiz SD & Demirtas S. Sex-hormone-binding globulin early in pregnancy for the prediction of severe gestational diabetes mellitus and related complications. Journal of Obstetrics and Gynaecology Research 2012 38 12861293. (doi:10.1111/j.1447-0756.2012.01870.x)

    • Search Google Scholar
    • Export Citation
  • 87

    Kralisch S & Fasshauer M. Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 2013 56 1021. (doi:10.1007/s00125-012-2737-4)

    • Search Google Scholar
    • Export Citation
  • 88

    Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Abou-Dakn M, Graf K, Kintscher U & Herrera E. Gestational diabetes mellitus causes changes in the concentrations of adipocyte fatty acid-binding protein and other adipocytokines in cord blood. Diabetes Care 2011 34 20612066. (doi:10.2337/dc11-0715)

    • Search Google Scholar
    • Export Citation
  • 89

    Kralisch S, Stepan H, Kratzsch J, Verlohren M, Verlohren HJ, Drynda K, Lössner U, Blüher M, Stumvoll M & Fasshauer M. Serum levels of adipocyte fatty acid binding protein are increased in gestational diabetes mellitus. European Journal of Endocrinology 2009 160 3338. (doi:10.1530/EJE-08-0540)

    • Search Google Scholar
    • Export Citation
  • 90

    Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K & Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. Journal of Clinical Endocrinology and Metabolism 1997 82 13131316. (doi:10.1210/jcem.82.5.3950)

    • Search Google Scholar
    • Export Citation
  • 91

    Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H & Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. Journal of Clinical Endocrinology and Metabolism 2000 85 33383342. (doi:10.1210/jc.85.9.3338)

    • Search Google Scholar
    • Export Citation
  • 92

    Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C & Pratley RE. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obesity Research 2001 9 414417. (doi:10.1038/oby.2001.54)

    • Search Google Scholar
    • Export Citation
  • 93

    Morisset AS, Dube MC, Cote JA, Robitaille J, Weisnagel SJ & Tchernof A. Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstetricia et Gynecologica Scandinavica 2011 90 524530. (doi:10.1111/j.1600-0412.2011.01094.x)

    • Search Google Scholar
    • Export Citation
  • 94

    Lacroix M, Battista MC, Doyon M, Houde G, Menard J, Ardilouze JL, Hivert M.-F, Perron P, Hivert M.-F Perron P. Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus. Acta Diabetologica 2014 51 609616. (doi:10.1007/s00592-014-0564-4)

    • Search Google Scholar
    • Export Citation
  • 95

    Zhang MX, Pan GT, Guo JF, Li BY, Qin LQ & Zhang ZL. Vitamin D deficiency increases the risk of gestational diabetes mellitus: a meta-analysis of observational studies. Nutrients 2015 7 83668375. (doi:10.3390/nu7105398)

    • Search Google Scholar
    • Export Citation
  • 96

    Scott DA, Loveman E, McIntyre L & Waugh N. Screening for gestational diabetes: a systematic review and economic evaluation. Health Technology Assessment 2002 6 1161. (doi:10.3310/hta6110)

    • Search Google Scholar
    • Export Citation
  • 97

    Waugh N, Royle P, Clar C, Henderson R, Cummins E, Hadden D, Lindsay R & Pearson D. Screening for hyperglycaemia in pregnancy: a rapid update for the National Screening Committee. Health Technology Assessment 2010 14 1183. (doi:10.3310/hta14450)

    • Search Google Scholar
    • Export Citation
  • 98

    van Leeuwen M, Opmeer BC, Zweers EJ, van Ballegooie E, ter Brugge HG, de Valk HW, Visser GHA, Mol BWJ. Estimating the risk of gestational diabetes mellitus: a clinical prediction model based on patient characteristics and medical history. BJOG 2010 117 6975. (doi:10.1111/j.1471-0528.2009.02425.x)

    • Search Google Scholar
    • Export Citation
  • 99

    Theriault S, Forest JC, Masse J & Giguere Y. Validation of early risk-prediction models for gestational diabetes based on clinical characteristics. Diabetes Research and Clinical Practice 2014 103 419425. (doi:10.1016/j.diabres.2013.12.009)

    • Search Google Scholar
    • Export Citation
  • 100

    Savvidou M, Nelson SM, Makgoba M, Messow CM, Sattar N & Nicolaides K. First-trimester prediction of gestational diabetes mellitus: examining the potential of combining maternal characteristics and laboratory measures. Diabetes 2010 59 30173022. (doi:10.2337/db10-0688)

    • Search Google Scholar
    • Export Citation
  • 101

    Wannamethee SG, Sattar N, Rumley A, Whincup PH, Lennon L & Lowe GD. Tissue plasminogen activator, von Willebrand factor, and risk of type 2 diabetes in older men. Diabetes Care 2008 31 9951000. (doi:10.2337/dbib7-1569)

    • Search Google Scholar
    • Export Citation
  • 102

    Maitland RA, Seed PT, Briley AL, Homsy M, Thomas S, Pasupathy D, Robson SC, Nelson SM, Sattar N & Poston L Prediction of gestational diabetes in obese pregnant women from the UK Pregnancies Better Eating and Activity (UPBEAT) pilot trial. Diabetic Medicine 2014 31 963970. (doi:10.1111/dme.12482)

    • Search Google Scholar
    • Export Citation

If the inline PDF is not rendering correctly, you can download the PDF file here.

 

     European Society of Endocrinology

     Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1506 306 32
PDF Downloads 592 128 22
  • 1

    Galtier F. Definition, epidemiology, risk factors. Diabetes and Metabolism 2010 36 628651. (doi:10.1016/j.diabet.2010.11.014)

  • 2

    Tamayo T, Rosenbauer J, Wild SH, Spijkerman AM, Baan C, Forouhi NG, Herder C & Rathmann W. Diabetes in Europe: an update. Diabetes Research and Clinical Practice 2014 103 206217. (doi:10.1016/j.diabres.2013.11.007)

    • Search Google Scholar
    • Export Citation
  • 3

    Catalano PM. Carbohydrate metabolism and gestational diabetes. Clinical Obstetrics and Gynecology 1994 37 2538. (doi:10.1097/00003081-199403000-00007)

    • Search Google Scholar
    • Export Citation
  • 4

    Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. American Journal of Clinical Nutrition 2000 71 (Supplement 5) 1256S1261S.

    • Search Google Scholar
    • Export Citation
  • 5

    Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, Hod M, Kitzmiller JL, Kjos SL & Oats JN Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes Care 2007 30 (Supplement 2) S251S260. (doi:10.2337/dbib7-s225)

    • Search Google Scholar
    • Export Citation
  • 6

    Bellamy L, Casas JP, Hingorani AD & Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009 373 17731779. (doi:10.1016/s0140-6736(09)60731-5)

    • Search Google Scholar
    • Export Citation
  • 7

    Kim SY, England JL, Sharma JA & Njoroge T. Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Experimental Diabetes Research 2011 2011 541308. (doi:10.1155/2011/541308)

    • Search Google Scholar
    • Export Citation
  • 8

    Van Assche FA, Aerts L & Holemans K. Maternal diabetes and the effect for the offspring. Verhandelingen – Koninklijke Academie voor Geneeskunde van België 1992 54 95106.

    • Search Google Scholar
    • Export Citation
  • 9

    Hopmans TE, van Houten C, Kasius A, Kouznetsova OI, Nguyen LA, Rooijmans SV, Voormolen DN, van Vliet EO, Franx A & Koster MP. Increased risk of type II diabetes mellitus and cardiovascular disease after gestational diabetes mellitus: a systematic review. Nederlands Tijdschrift voor Geneeskunde 2015 159 A8043.

    • Search Google Scholar
    • Export Citation
  • 10

    Hanson MA & Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiological Reviews 2014 94 10271076. (doi:10.1152/physrev.00029.2013)

    • Search Google Scholar
    • Export Citation
  • 11

    Plagemann A. Maternal diabetes and perinatal programming. Early Human Development 2011 87 743747. (doi:10.1016/j.earlhumdev.2011.08.018)

  • 12

    Horvath K, Koch K, Jeitler K, Matyas E, Bender R, Bastian H, Lange S & Siebenhofer A. Effects of treatment in women with gestational diabetes mellitus: systematic review and meta-analysis. BMJ 2010 340 c1395. (doi:10.1136/bmj.c1395)

    • Search Google Scholar
    • Export Citation
  • 13

    Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS & Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. New England Journal of Medicine 2005 352 24772486. (doi:10.1056/NEJMoa042973)

    • Search Google Scholar
    • Export Citation
  • 14

    Nanda S, Savvidou M, Syngelaki A, Akolekar R & Nicolaides KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenatal Diagnosis 2011 31 135141. (doi:10.1002/pd.2636)

    • Search Google Scholar
    • Export Citation
  • 15

    Smirnakis KV, Plati A, Wolf M, Thadhani R & Ecker JL. Predicting gestational diabetes: choosing the optimal early serum marker. American Journal of Obstetrics and Gynecology 2007 196 410.e1410.e7. (doi:10.1016/j.ajog.2006.12.011)

    • Search Google Scholar
    • Export Citation
  • 16

    Nistala R, Hayden MR, Demarco VG, Henriksen EJ, Lackland DT & Sowers JR. Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome. Cardiorenal Medicine 2011 1 243254. (doi:10.1159/000332756)

    • Search Google Scholar
    • Export Citation
  • 17

    Reynolds CM, Gray C, Li M, Segovia SA & Vickers MH. Early life nutrition and energy balance disorders in offspring in later life. Nutrients 2015 7 80908111. (doi:10.3390/nu7095384)

    • Search Google Scholar
    • Export Citation
  • 18

    Langley-Evans SC, Bellinger L & McMullen S. Animal models of programming: early life influences on appetite and feeding behaviour. Maternal and Child Nutrition 2005 1 142148. (doi:10.1111/j.1740-8709.2005.00015.x)

    • Search Google Scholar
    • Export Citation
  • 19

    Langley-Evans SC. Metabolic programming in pregnancy: studies in animal models. Genes & Nutrition 2007 2 3338. (doi:10.1007/s12263-007-0005-x)

    • Search Google Scholar
    • Export Citation
  • 20

    Godfrey KM, Gluckman PD & Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends in Endocrinology and Metabolism 2010 21 199205. (doi:10.1016/j.tem.2009.12.008)

    • Search Google Scholar
    • Export Citation
  • 21

    Cardozo E, Pavone ME & Hirshfeld-Cytron JE. Metabolic syndrome and oocyte quality. Trends in Endocrinology and Metabolism 2011 22 103109. (doi:10.1016/j.tem.2010.12.002)

    • Search Google Scholar
    • Export Citation
  • 22

    Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM & Dabelea D. The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: the EPOCH study. Journal of Pediatrics 2011 158 941946. (doi:10.1016/j.jpeds.2010.12.007)

    • Search Google Scholar
    • Export Citation
  • 23

    Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J & Damm P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 2008 31 340346. (doi:10.2337/dbib7-1596)

    • Search Google Scholar
    • Export Citation
  • 24

    Siega-Riz AM, Siega-Riz AM & Laraia B. The implications of maternal overweight and obesity on the course of pregnancy and birth outcomes. Maternal and Child Health Journal 2006 10 (Supplement 5) S153S156. (doi:10.1007/s10995-006-0115-x)

    • Search Google Scholar
    • Export Citation
  • 25

    Teh WT, Teede HJ, Paul E, Harrison CL, Wallace EM & Allan C. Risk factors for gestational diabetes mellitus: implications for the application of screening guidelines. Australian and New Zealand Journal of Obstetrics and Gynaecology 2011 51 2630. (doi:10.1111/j.1479-828X.2011.01292.x)

    • Search Google Scholar
    • Export Citation
  • 26

    Ben-Haroush A, Yogev Y & Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabetic Medicine 2004 21 103113. (doi:10.1046/j.1464-5491.2003.00985.x)

    • Search Google Scholar
    • Export Citation
  • 27

    Permana PA, Menge C & Reaven PD. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochemical and Biophysical Research Communications 2006 341 507514. (doi:10.1016/j.bbrc.2006.01.012)

    • Search Google Scholar
    • Export Citation
  • 28

    Fantuzzi G. Adipose tissue, adipokines, and inflammation. Journal of Allergy and Clinical Immunology 2005 115 911919. (doi:10.1016/j.jaci.2005.02.023)

    • Search Google Scholar
    • Export Citation
  • 29

    Kralisch S, Bluher M, Paschke R, Stumvoll M & Fasshauer M. Adipokines and adipocyte targets in the future management of obesity and the metabolic syndrome. Mini-Reviews in Medicinal Chemistry 2007 7 3945. (doi:10.2174/138955707779317821)

    • Search Google Scholar
    • Export Citation
  • 30

    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006 444 860867. (doi:10.1038/nature05485)

  • 31

    Wolf M, Sauk J, Shah A, Vossen Smirnakis K, Jimenez-Kimble R, Ecker JL & Thadhani R. Inflammation and glucose intolerance: a prospective study of gestational diabetes mellitus. Diabetes Care 2004 27 2127. (doi:10.2337/diacare.27.1.21)

    • Search Google Scholar
    • Export Citation
  • 32

    Qiu C, Sorensen TK, Luthy DA & Williams MA. A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatric and Perinatal Epidemiology 2004 18 377384. (doi:10.1111/j.1365-3016.2004.00578.x)

    • Search Google Scholar
    • Export Citation
  • 33

    Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC & Catalano PM. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002 51 22072213. (doi:10.2337/diabetes.51.7.2207)

    • Search Google Scholar
    • Export Citation
  • 34

    Georgiou HM, Lappas M, Georgiou GM, Marita A, Bryant VJ, Hiscock R, Permezel M, Khalil Z & Rice G. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetologica 2008 45 157165. (doi:10.1007/s00592-008-0037-8)

    • Search Google Scholar
    • Export Citation
  • 35

    Chandran M, Phillips SA, Ciaraldi T & Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003 26 24422450. (doi:10.2337/diacare.26.8.2442)

    • Search Google Scholar
    • Export Citation
  • 36

    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T & Miyaoka K Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochemical and Biophysical Research Communications 2012 425 560564. (doi:10.1016/j.bbrc.2012.08.024)

    • Search Google Scholar
    • Export Citation
  • 37

    Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H & Pfeiffer AF. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003 361 226228. (doi:10.1016/S0140-6736(03)12255-6)

    • Search Google Scholar
    • Export Citation
  • 38

    Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A & Kohno N. Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans. Journal of Clinical Endocrinology and Metabolism 2006 91 38733877. (doi:10.1210/jc.2006-1158)

    • Search Google Scholar
    • Export Citation
  • 39

    Galic S, Oakhill JS & Steinberg GR. Adipose tissue as an endocrine organ. Molecular and Cellular Endocrinology 2010 316 129139. (doi:10.1016/j.mce.2009.08.018)

    • Search Google Scholar
    • Export Citation
  • 40

    Doruk M, Ugur M, Oruc AS, Demirel N & Yildiz Y. Serum adiponectin in gestational diabetes and its relation to pregnancy outcome. Journal of Obstetrics and Gynaecology 2014 34 471475. (doi:10.3109/01443615.2014.902430)

    • Search Google Scholar
    • Export Citation
  • 41

    Pala HG, Ozalp Y, Yener AS, Gerceklioglu G, Uysal S & Onvural A. Adiponectin levels in gestational diabetes mellitus and in pregnant women without glucose intolerance. Advances in Clinical and Experimental Medicine 2015 24 8592. (doi:10.17219/acem/38141)

    • Search Google Scholar
    • Export Citation
  • 42

    Tsai PJ, Yu CH, Hsu SP, Lee YH, Huang IT, Ho SC & Chu CH. Maternal plasma adiponectin concentrations at 24 to 31 weeks of gestation: negative association with gestational diabetes mellitus. Nutrition 2005 21 10951099. (doi:10.1016/j.nut.2005.03.008)

    • Search Google Scholar
    • Export Citation
  • 43

    Soheilykhah S, Mohammadi M, Mojibian M, Rahimi-Saghand S, Rashidi M, Hadinedoushan H & Afkhami-Ardekani M. Maternal serum adiponectin concentration in gestational diabetes. Gynecological Endocrinology 2009 25 593596. (doi:10.1080/09513590902972109)

    • Search Google Scholar
    • Export Citation
  • 44

    Ramirez VI, Miller E, Meireles CL, Gelfond J, Krummel DA & Powell TL. Adiponectin and IGFBP-1 in the development of gestational diabetes in obese mothers. BMJ Open Diabetes Research & Care 2014 2 e000010. (doi:10.1136/bmjdrc-2013-000010)

    • Search Google Scholar
    • Export Citation
  • 45

    Xu J, Zhao YH, Chen YP, Yuan XL, Wang J, Zhu H & Lu CM. Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Scientific World Journal 2014 2014 926932. (doi:10.1155/2014/926932)

    • Search Google Scholar
    • Export Citation
  • 46

    Wojcik M, Chmielewska-Kassassir M, Grzywnowicz K, Wozniak L & Cypryk K. The relationship between adipose tissue-derived hormones and gestational diabetes mellitus (GDM). Endokrynologia Polska 2014 65 134142. (doi:10.5603/EP.2014.0019)

    • Search Google Scholar
    • Export Citation
  • 47

    Lacroix M, Battista MC, Doyon M, Menard J, Ardilouze JL, Perron P & Hivert MF. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care 2013 36 15771583. (doi:10.2337/dc12-1731)

    • Search Google Scholar
    • Export Citation
  • 48

    Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T & Luthy DA. Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2004 89 23062311. (doi:10.1210/jc.2003-031201)

    • Search Google Scholar
    • Export Citation
  • 49

    Lain KY, Daftary AR, Ness RB & Roberts JM. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clinical Endocrinology 2008 69 407411. (doi:10.1111/j.1365-2265.2008.03198.x)

    • Search Google Scholar
    • Export Citation
  • 50

    Iliodromiti S, Sassarini J, Kelsey TW, Lindsay RS, Sattar N & Nelson SM. Accuracy of circulating adiponectin for predicting gestational diabetes: a systematic review and meta-analysis. Diabetologia 2016 59 692699. (doi:10.1007/s00125-015-3855-6)

    • Search Google Scholar
    • Export Citation
  • 51

    Hedderson MM, Darbinian J, Havel PJ, Quesenberry CP, Sridhar S, Ehrlich S & Ferrara A. Low prepregnancy adiponectin concentrations are associated with a marked increase in risk for development of gestational diabetes mellitus. Diabetes Care 2013 36 39303937. (doi:10.2337/dc13-0389)

    • Search Google Scholar
    • Export Citation
  • 52

    Ukkola O & Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? Journal of Molecular Medicine 2002 80 696702. (doi:10.1007/s00109-002-0378-7)

    • Search Google Scholar
    • Export Citation
  • 53

    Wauters M, Considine RV & Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator. European Journal of Endocrinology 2000 143 293311. (doi:10.1530/eje.0.1430293)

    • Search Google Scholar
    • Export Citation
  • 54

    Fasshauer M, Bluher M & Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes & Endocrinology 2014 2 488499. (doi:10.1016/s2213-8587(13)70176-1)

    • Search Google Scholar
    • Export Citation
  • 55

    Briana DD & Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reproductive Sciences 2009 16 921937. (doi:10.1177/1933719109336614)

    • Search Google Scholar
    • Export Citation
  • 56

    Miehle K, Stepan H & Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clinical Endocrinology 2012 76 211. (doi:10.1111/j.1365-2265.2011.04234.x)

    • Search Google Scholar
    • Export Citation
  • 57

    Qiu C, Williams MA, Vadachkoria S, Frederick IO & Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstetrics & Gynecology 2004 103 519525. (doi:10.1097/01.aog.0000113621.53602.7a)

    • Search Google Scholar
    • Export Citation
  • 58

    Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Current Medicinal Chemistry 2008 15 18511862. (doi:10.2174/092986708785133004)

    • Search Google Scholar
    • Export Citation
  • 59

    Filippatos TD, Derdemezis CS, Gazi IF, Lagos K, Kiortsis DN, Tselepis AD & Elisaf MS. Increased plasma visfatin levels in subjects with the metabolic syndrome. European Journal of Clinical Investigation 2008 38 7172. (doi:10.1111/j.1365-2362.2007.01904.x)

    • Search Google Scholar
    • Export Citation
  • 60

    Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ & Lee YJ. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2006 91 295299. (doi:10.1210/jc.2005-1475)

    • Search Google Scholar
    • Export Citation
  • 61

    Mazaki-Tovi S, Romero R, Kusanovic JP, Vaisbuch E, Erez O, Than NG, Chaiworapongsa T, Nhan-Chang CL, Pacora P & Gotsch F Maternal visfatin concentration in normal pregnancy. Journal of Perinatal Medicine 2009 37 206217. (doi:10.1515/jpm.2009.054)

    • Search Google Scholar
    • Export Citation
  • 62

    Lewandowski KC, Stojanovic N, Press M, Tuck SM, Szosland K, Bienkiewicz M, Vatish M, Lewinski A, Prelevic GM & Randeva HS. Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance. Diabetologia 2007 50 10331037. (doi:10.1007/s00125-007-0610-7)

    • Search Google Scholar
    • Export Citation
  • 63

    Krzyzanowska K, Krugluger W, Mittermayer F, Rahman R, Haider D, Shnawa N & Schernthaner G. Increased visfatin concentrations in women with gestational diabetes mellitus. Clinical Science 2006 110 605609. (doi:10.1042/CS20050363)

    • Search Google Scholar
    • Export Citation
  • 64

    Akturk M, Altinova AE, Mert I, Buyukkagnici U, Sargin A, Arslan M & Danisman N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. Journal of Endocrinological Investigation 2008 31 610613. (doi:10.1007/BF03345611)

    • Search Google Scholar
    • Export Citation
  • 65

    Mastorakos G, Valsamakis G, Papatheodorou DC, Barlas I, Margeli A, Boutsiadis A, Kouskouni E, Vitoratos N, Papadimitriou A & Papassotiriou I The role of adipocytokines in insulin resistance in normal pregnancy: visfatin concentrations in early pregnancy predict insulin sensitivity. Clinical Chemistry 2007 53 14771483. (doi:10.1373/clinchem.2006.084731)

    • Search Google Scholar
    • Export Citation
  • 66

    Ferreira AF, Rezende JC, Vaikousi E, Akolekar R & Nicolaides KH. Maternal serum visfatin at 11–13 weeks of gestation in gestational diabetes mellitus. Clinical Chemistry 2011 57 609613. (doi:10.1373/clinchem.2010.159806)

    • Search Google Scholar
    • Export Citation
  • 67

    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS & Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001 409 307312. (doi:10.1038/35053000)

    • Search Google Scholar
    • Export Citation
  • 68

    Palik E, Baranyi E, Melczer Z, Audikovszky M, Szocs A, Winkler G & Cseh K. Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance. Diabetes Research and Clinical Practice 2007 76 351357. (doi:10.1016/j.diabres.2006.09.005)

    • Search Google Scholar
    • Export Citation
  • 69

    Cortelazzi D, Corbetta S, Ronzoni S, Pelle F, Marconi A, Cozzi V, Cetin I, Cortelazzi R, Beck-Peccoz P & Spada A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clinical Endocrinology 2007 66 447453. (doi:10.1111/j.1365-2265.2007.02761.x)

    • Search Google Scholar
    • Export Citation
  • 70

    Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A & Gorska M. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecological Endocrinology 2009 25 258263. (doi:10.1080/09513590802653825)

    • Search Google Scholar
    • Export Citation
  • 71

    Lowe LP, Metzger BE, Lowe WL Jr, Dyer AR, McDade TW, McIntyre HD & HAPO Study Cooperative Research Group. Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Journal of Clinical Endocrinology and Metabolism 2010 95 54275434. (doi:10.1210/jc.2010-1662)

    • Search Google Scholar
    • Export Citation
  • 72

    Megia A, Vendrell J, Gutierrez C, Sabate M, Broch M, Fernandez-Real JM & Simón I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. European Journal of Endocrinology 2008 158 173178. (doi:10.1530/EJE-07-0671)

    • Search Google Scholar
    • Export Citation
  • 73

    Lobo TF, Torloni MR, Gueuvoghlanian-Silva BY, Mattar R & Daher S. Resistin concentration and gestational diabetes: a systematic review of the literature. Journal of Reproductive Immunology 2013 97 120127. (doi:10.1016/j.jri.2012.10.004)

    • Search Google Scholar
    • Export Citation
  • 74

    Cawthorn WP & Sethi JK. TNF-alpha and adipocyte biology. FEBS Letters 2008 582 117131. (doi:10.1016/j.febslet.2007.11.051)

  • 75

    Gao XL, Yang HX & Zhao Y. Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chinese Medical Journal 2008 121 701705.

    • Search Google Scholar
    • Export Citation
  • 76

    Lopez-Tinoco C, Roca M, Fernandez-Deudero A, Garcia-Valero A, Bugatto F, Aguilar-Diosdado M & Bartha JL. Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 2012 58 1419. (doi:10.1016/j.cyto.2011.12.004)

    • Search Google Scholar
    • Export Citation
  • 77

    Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, Miled A, Grissa A, Jerbi M & Tabka Z Modulation of adipokines and cytokines in gestational diabetes and macrosomia. Journal of Clinical Endocrinology and Metabolism 2006 91 41374143. (doi:10.1210/jc.2006-0980)

    • Search Google Scholar
    • Export Citation
  • 78

    Briana DD & Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reproductive Sciences 2009 16 921937. (doi:10.1177/1933719109336614)

    • Search Google Scholar
    • Export Citation
  • 79

    Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL & Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care 2003 26 819824. (doi:10.2337/diacare.26.3.819)

    • Search Google Scholar
    • Export Citation
  • 80

    Berggren EK, Roeder HA, Boggess KA, Moss K, Offenbacher S, Campbell E & Grotegut CA. First-trimester maternal serum C-reactive protein as a predictor of third-trimester impaired glucose tolerance. Reproductive Sciences 2015 22 9093. (doi:10.1177/1933719114532843)

    • Search Google Scholar
    • Export Citation
  • 81

    Pugeat M, Crave JC, Tourniaire J & Forest MG. Clinical utility of sex hormone-binding globulin measurement. Hormone Research 1996 45 148155. (doi:10.1159/000184778)

    • Search Google Scholar
    • Export Citation
  • 82

    Hu J, Zhang A, Yang S, Wang Y, Goswami R, Zhou H, Wang Z, Li R, Cheng Q & Zhen Q Combined effects of sex hormone-binding globulin and sex hormones on risk of incident type 2 diabetes. Journal of Diabetes 2015 8 508515. (doi:10.1111/1753-0407.12322)

    • Search Google Scholar
    • Export Citation
  • 83

    Bartha JL, Comino-Delgado R, Romero-Carmona R & Gomez-Jaen MC. Sex hormone-binding globulin in gestational diabetes. Acta Obstetricia et Gynecologica Scandinavica 2000 79 839845. (doi:10.1034/j.1600-0412.2000.079010839.x)

    • Search Google Scholar
    • Export Citation
  • 84

    Kopp HP, Festa A, Krugluger W & Schernthaner G. Low levels of sex-hormone-binding globulin predict insulin requirement in patients with gestational diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes 2001 109 365369. (doi:10.1055/s-2001-17408)

    • Search Google Scholar
    • Export Citation
  • 85

    Maged AM, Moety GA, Mostafa WA & Hamed DA. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. Journal of Maternal-Fetal & Neonatal Medicine 2014 27 11081112. (doi:10.3109/14767058.2013.850489)

    • Search Google Scholar
    • Export Citation
  • 86

    Caglar GS, Ozdemir ED, Cengiz SD & Demirtas S. Sex-hormone-binding globulin early in pregnancy for the prediction of severe gestational diabetes mellitus and related complications. Journal of Obstetrics and Gynaecology Research 2012 38 12861293. (doi:10.1111/j.1447-0756.2012.01870.x)

    • Search Google Scholar
    • Export Citation
  • 87

    Kralisch S & Fasshauer M. Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 2013 56 1021. (doi:10.1007/s00125-012-2737-4)

    • Search Google Scholar
    • Export Citation
  • 88

    Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Abou-Dakn M, Graf K, Kintscher U & Herrera E. Gestational diabetes mellitus causes changes in the concentrations of adipocyte fatty acid-binding protein and other adipocytokines in cord blood. Diabetes Care 2011 34 20612066. (doi:10.2337/dc11-0715)

    • Search Google Scholar
    • Export Citation
  • 89

    Kralisch S, Stepan H, Kratzsch J, Verlohren M, Verlohren HJ, Drynda K, Lössner U, Blüher M, Stumvoll M & Fasshauer M. Serum levels of adipocyte fatty acid binding protein are increased in gestational diabetes mellitus. European Journal of Endocrinology 2009 160 3338. (doi:10.1530/EJE-08-0540)

    • Search Google Scholar
    • Export Citation
  • 90

    Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K & Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. Journal of Clinical Endocrinology and Metabolism 1997 82 13131316. (doi:10.1210/jcem.82.5.3950)

    • Search Google Scholar
    • Export Citation
  • 91

    Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H & Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. Journal of Clinical Endocrinology and Metabolism 2000 85 33383342. (doi:10.1210/jc.85.9.3338)

    • Search Google Scholar
    • Export Citation
  • 92

    Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C & Pratley RE. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obesity Research 2001 9 414417. (doi:10.1038/oby.2001.54)

    • Search Google Scholar
    • Export Citation
  • 93

    Morisset AS, Dube MC, Cote JA, Robitaille J, Weisnagel SJ & Tchernof A. Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstetricia et Gynecologica Scandinavica 2011 90 524530. (doi:10.1111/j.1600-0412.2011.01094.x)

    • Search Google Scholar
    • Export Citation
  • 94

    Lacroix M, Battista MC, Doyon M, Houde G, Menard J, Ardilouze JL, Hivert M.-F, Perron P, Hivert M.-F Perron P. Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus. Acta Diabetologica 2014 51 609616. (doi:10.1007/s00592-014-0564-4)

    • Search Google Scholar
    • Export Citation
  • 95

    Zhang MX, Pan GT, Guo JF, Li BY, Qin LQ & Zhang ZL. Vitamin D deficiency increases the risk of gestational diabetes mellitus: a meta-analysis of observational studies. Nutrients 2015 7 83668375. (doi:10.3390/nu7105398)

    • Search Google Scholar
    • Export Citation
  • 96

    Scott DA, Loveman E, McIntyre L & Waugh N. Screening for gestational diabetes: a systematic review and economic evaluation. Health Technology Assessment 2002 6 1161. (doi:10.3310/hta6110)

    • Search Google Scholar
    • Export Citation
  • 97

    Waugh N, Royle P, Clar C, Henderson R, Cummins E, Hadden D, Lindsay R & Pearson D. Screening for hyperglycaemia in pregnancy: a rapid update for the National Screening Committee. Health Technology Assessment 2010 14 1183. (doi:10.3310/hta14450)

    • Search Google Scholar
    • Export Citation
  • 98

    van Leeuwen M, Opmeer BC, Zweers EJ, van Ballegooie E, ter Brugge HG, de Valk HW, Visser GHA, Mol BWJ. Estimating the risk of gestational diabetes mellitus: a clinical prediction model based on patient characteristics and medical history. BJOG 2010 117 6975. (doi:10.1111/j.1471-0528.2009.02425.x)

    • Search Google Scholar
    • Export Citation
  • 99

    Theriault S, Forest JC, Masse J & Giguere Y. Validation of early risk-prediction models for gestational diabetes based on clinical characteristics. Diabetes Research and Clinical Practice 2014 103 419425. (doi:10.1016/j.diabres.2013.12.009)

    • Search Google Scholar